
Journal of Computational Physics 229 (2010) 3543–3572
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
High-order accurate solution of the incompressible Navier–Stokes
equations on massively parallel computers

R. Henniger *, D. Obrist, L. Kleiser
Institute of Fluid Dynamics, ETH Zurich, 8092 Zürich, Switzerland
a r t i c l e i n f o

Article history:
Received 19 May 2009
Received in revised form 3 December 2009
Accepted 12 January 2010
Available online 22 January 2010

MSC:
65M06
76M20

Keywords:
Incompressible flow
Implicit time integration
Iterative solution
Preconditioner
Massively parallel
High-order
Finite differences
Direct numerical simulation
Transition
Turbulent channel flow
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.01.015

* Corresponding author. Tel.: +41 44 632 0396; fa
E-mail address: henniger@ifd.mavt.ethz.ch (R. H
a b s t r a c t

The emergence of ‘‘petascale” supercomputers requires us to develop today’s simulation
codes for (incompressible) flows by codes which are using numerical schemes and meth-
ods that are better able to exploit the offered computational power. In that spirit, we pres-
ent a massively parallel high-order Navier–Stokes solver for large incompressible flow
problems in three dimensions. The governing equations are discretized with finite differ-
ences in space and a semi-implicit time integration scheme. This discretization leads to
a large linear system of equations which is solved with a cascade of iterative solvers.
The iterative solver for the pressure uses a highly efficient commutation-based precondi-
tioner which is robust with respect to grid stretching. The efficiency of the implementation
is further enhanced by carefully setting the (adaptive) termination criteria for the different
iterative solvers. The computational work is distributed to different processing units by a
geometric data decomposition in all three dimensions. This decomposition scheme ensures
a low communication overhead and excellent scaling capabilities. The discretization is
thoroughly validated. First, we verify the convergence orders of the spatial and temporal
discretizations for a forced channel flow. Second, we analyze the iterative solution
technique by investigating the absolute accuracy of the implementation with respect to
the different termination criteria. Third, Orr–Sommerfeld and Squire eigenmodes for plane
Poiseuille flow are simulated and compared to analytical results. Fourth, the practical
applicability of the implementation is tested for transitional and turbulent channel flow.
The results are compared to solutions from a pseudospectral solver. Subsequently, the
performance of the commutation-based preconditioner for the pressure iteration is dem-
onstrated. Finally, the excellent parallel scalability of the proposed method is demon-
strated with a weak and a strong scaling test on up to Oð104Þ processing units and
Oð1011Þ grid points.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Over the past few decades, the high-fidelity simulation of incompressible viscous time-dependent flows in three dimen-
sions has been established as an important tool for studying fundamental phenomena in canonical flow configurations
[22,32]. With the continued rapid growth in computational power, larger and larger simulations become possible (e.g.
[19,46]). At the same time, the change from large shared-memory supercomputing systems to massively parallel
distributed-memory platforms has prompted new programming paradigms which require the application of different
. All rights reserved.

x: +41 44 632 1147.
enniger).

http://dx.doi.org/10.1016/j.jcp.2010.01.015
mailto:henniger@ifd.mavt.ethz.ch
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

3544 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
numerical methods. ‘‘Petascale systems” (supercomputers which can perform over 1015 floating-point operations per second,
Flop/s) will become more widely available in the next few years. To be able to use these computational platforms for high-
fidelity simulations, we have to employ new numerical tools.

The simulation code presented in this work is an efficient solver for large incompressible flow problems. It uses high-or-
der discretization schemes and is optimized specifically for massively parallel supercomputers. Our choices for the parallel-
ization strategy, solution algorithms and discretization schemes result from the targeted flow problems and type of
computing platforms. The computer architecture, problem structure (size, boundary conditions, etc.), discretization schemes
and numerical methods for solving large systems of equations are tightly connected factors which determine the overall effi-
ciency of a simulation code and cannot be considered separately.

At this point, it is important to define the term ‘‘efficient” more clearly. Generally, we assume that the computational ef-
fort in terms of floating-point operations for a given accuracy of the numerical solution is already minimized such that only
the parallelization can alter the overall efficiency of a parallel simulation code. Hence, ‘‘efficient” could refer to the ability to
solve a problem of given size as fast as possible, but it could also mean that the overall time to solve the problem remains
(nearly) constant when the problem size and the number of processors are increased at the same rate. The former definition
relates to the strong scalability of a parallel simulation code, whereas the latter requires weak scalability. The present work
focuses on weak scaling properties. This goal is in accordance with the trend towards larger and larger numerical simulations
carried out on computers with more and more processors.

Many canonical flow problems in simple geometries allow the application of the fast Fourier transform (FFT) for the
numerical solution of the governing equations. The FFT is typically employed to solve Poisson problems (which are asso-
ciated with the incompressibility constraint) in spectral space. This approach is straightforward for Fourier or Fourier–
Chebychev pseudospectral methods (e.g. [28,31]) and it can also be used by fast Poisson solvers for non-spectral methods
(e.g. [38]). Since the solution of the Poisson problems is typically the most expensive part of the numerical solution, the
high efficiency of this approach yields very fast simulation codes. Other direct or iterative solution techniques, except
multigrid, are usually not competitive with such Poisson solvers [13] which are well suited for large shared-memory
supercomputers with vector processors. With the advent of ever larger massively parallel supercomputers which offer
thousands of distributed processing units these methods have lost some of their appeal due to their limited scalability.
We will discuss in Section 3 that especially global discretization schemes (such as the Fourier, Fourier–Chebychev
pseudospectral method or compact finite differences) may impose some limits on the weak scalability of simulation
codes. The same holds for local methods if fast Poisson solvers are employed. Therefore, we propose to use local discret-
ization schemes in all spatial directions together with iterative, multigrid-based solvers [13] for the algebraic equations.
This approach offers comparable levels of numerical accuracy as spectral methods, but may offer better scalability
properties.

The governing equations are discretized in time with a semi-implicit time integration scheme in primitive variables. The
resulting linear system of equations is solved in each (sub-)time step after forming the Schur complement problem [47] for
the pressure. To solve it iteratively we employ a sophisticated preconditioner which has been used before for steady-state
problems [11]. This procedure requires solutions of secondary Poisson and Helmholtz problems which are solved iteratively
as well. We demonstrate that a careful choice of (adaptive) termination criteria for the different problems leads to a reduced
computational effort. Overall, the simulation code consists of a collection of carefully selected and tuned numerical methods
in the spirit of best practices.

The implementation presented in this paper is limited to incompressible flows in rectangular domains with a non-uni-
form Cartesian grid. These limitations have been chosen for simplicity and clarity and we would like to emphasize that
the generalization to more complex geometries using the immersed interface method [26], the immersed boundary method
[35] and/or curvilinear orthogonal coordinates [5] is relatively straightforward. The numerical framework could also be used
to simulate more complex physics (e.g. miscible multiphase flow [15,16] or compressible flows).

This paper orients itself roughly on the work of Brüger et al. [5] whose work was similarly motivated (except for our focus
on parallel efficiency). Other central differences to their work are: the choice of the preconditioner for the pressure problem,
sharper (adaptive) termination criteria for the iterative solvers, and the application of high-order finite difference schemes in
all three directions (which is a direct result of our focus on massively parallel computing platforms). For an overview on
other high-order solvers for the Navier–Stokes equations we refer the reader to the introduction in Brüger et al. [5] and ref-
erences therein.

The remainder of this paper is structured as follows: Section 2 defines the governing equations and boundary conditions.
We discuss the parallelization and solution strategy in Section 3. Section 4 introduces the temporal and spatial discretization
schemes. The resulting large system of linear equations is solved by a cascade of iterative solvers with preconditioners (Sec-
tion 5). We validate our implementation in Section 6, test the performance of the preconditioner for the pressure problem in
Section 7 and present weak and strong scaling tests in Section 8. Section 9 concludes this paper.

2. Governing equations

The present work describes a simulation code which solves the Navier–Stokes equations for incompressible flows written
in non-dimensional form,

1 Thr

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3545
@u
@t
þ ðu � rÞu|fflfflfflfflffl{zfflfflfflfflffl}

��NðuÞ

¼ �rpþ Re1Du|fflfflffl{zfflfflffl}
�Lu

; ð1aÞ

r � u ¼ 0; ð1bÞ
for an initial condition uðt ¼ 0Þ ¼ uð0Þ and appropriately chosen boundary conditions for u. The variable p stands for the pres-
sure and u ¼ ½u1;u2;u3� for the velocity whose components are aligned with the Cartesian coordinate directions ½x1; x2; x3�.
The Reynolds number is defined as Re ¼ UL=m with some reference velocity U, length scale L and the kinematic viscosity
m. The linear viscous terms in Eq. (1a) are named Lu, whereas all other terms (except for the time derivative and the pressure
gradient) are collected in NðuÞ. In matrix form the governing equations are written as
@

@t
u

0

� �
þ
�L G
D 0

� �
u

p

� �
¼
NðuÞ

0

� �
ð2Þ
where D and G are the divergence and gradient operator, respectively. An equation for the pressure is obtained by applying
the divergence operator to Eq. (1a),
DGp ¼ DNðuÞ: ð3Þ
The formal solution of this Poisson equation could be introduced directly into Eq. (1a) to eliminate the pressure. In that
sense, the pressure can be seen as an auxiliary variable which is necessary to enforce incompressibility. The pressure Eq.
(3) is inherently ill-posed, since the pressure appears only in the gradient operator G, such that the absolute pressure level
is never specified. However, the pressure gradient Gp is unique and the Navier–Stokes equations with suitable velocity
boundary conditions form a well-posed problem for the velocity u.

In the present implementation, we will solve a discretized form of Eq. (2). From this discretized system of equations, we
will derive a discretized equation for the pressure such that no pressure boundary conditions need to be specified explicitly.
The resulting pressure equation is different from a direct discretization of Eq. (3) due to the velocity and pressure boundary
conditions and the discretization of @=@t.

The governing equations are solved in a domain X with the boundary @X. Different types of velocity boundary conditions
can be formulated on the condition that they lead to a well-posed problem for u. Such boundary conditions must be either of
Dirichlet-, Neumann-, or Robin-type [43]. Neumann boundary conditions can lead to an ill-posed problem in certain situa-
tions [43]. A special spatial discretization is required in the vicinity of the boundaries, especially for high-order finite differ-
ences. In such cases, Dirichlet and Robin boundary conditions for the boundary-normal velocity component lead implicitly to
Neumann or Neumann-like boundary conditions for the pressure. Neumann boundary conditions for that velocity compo-
nent lead generally to an ill-posed problem since they allow a divergence-free solution on the boundary only if the other
velocity boundary conditions are set consistently. Even then, pressure boundary conditions must be defined explicitly. This
is obvious in the discrete case, since those rows of the pressure problem which correspond to the boundary points would be
zero otherwise.
3. Solution technique, discretization and parallelization

Because the pressure Eq. (3) is elliptic, the discretization of Eq. (2) leads to a large system of equations which has to be
solved in every (sub-)time step. This is typically the most time-consuming part of the simulation. If the problem gets too
large to fit into the main memory of a single processor, the problem can be distributed to a larger number of processors1

of a parallel computer which requires a data decomposition method to breakup the vectors and matrices into smaller blocks.
The same needs to be done if the processor speed is too low to solve the problem within a given time.

The method for decomposing the computational domain is usually dictated by the choice of the spatial discretization
scheme and by the solution technique. Hence, a complete strategy for solving the incompressible Navier–Stokes equations
numerically consists of a data decomposition method, a discretization scheme and an appropriate solution technique for
the resulting system of linear equations. We will compare such strategies in the following where we presume that the com-
putational effort, i.e. the number of floating-point operations to solve the discrete equations at a given accuracy, is more or
less identical for the different strategies if no parallelization is present.

3.1. Static and dynamic data decomposition

The classical static data decomposition scheme is sketched in Fig. 1 for the two-dimensional case. Each processor holds a
contiguous sub-domain of the whole computational domain in its memory. These sub-domains are connected to their neigh-
boring sub-domains by ghost cells which are located at the interface between two sub-domains. Each sub-domain contains
certain portions of the global vectors and discrete operators (e.g. the diagonal blocks in a system of linear equations). The
ghost cells correspond to the parts of the operator which cannot be distributed (e.g. the off-diagonal blocks in a system
oughout this paper, we use the term ‘‘processor” or ‘‘core” to describe a single processing unit and not a CPU or node with multiple cores.

P1

P1
P2

P2

P3

P3

P4

P4

computational domain

copied part of computational domain

ghost cells

Fig. 1. Static data decomposition and ghost cell update between four processors.

Table 1
Complexities and scaling characteristics of the different parallelization approaches with the dimension d, the differentiation stencil width n, the number of grid
points Nd and the number of processors P. Note that d log N ¼ const:þ log P for Nd � P.

Strategy A Strategy B +Multigrid Strategy C

Computation OðdnNdP�1Þ OðdnNdP�1Þ þ Oðdn2Nd�1P3=d�1Þ þOðd log PÞ OðdNdP�1 log NÞ

Communication Best:OðdnNd�1P1=d�1Þ OðdnNd�1P3=d�1Þ þOðd log PÞ þ OðP1=dÞ Oððd� 1ÞNdP1=d�1Þ
Worst: OðdnNd�1P2=d�1Þ

Weak scaling Best:const: const:þOðP2=dÞ þOðlog PÞ þ OðP1=dÞ const:þOðlog PÞ þ OðP1=dÞ
ðd; n;Nd=P ¼ const:Þ Worst: const:þOðP1=dÞ

Strong scaling Best:OðP�1Þ þ OðP1=d�1Þ OðP�1Þ þ OðP3=d�1Þ þOðlog PÞ þ OðP1=dÞ OðP�1Þ þ OðP1=d�1Þ
ðd; n;Nd ¼ const:Þ Worst: OðP�1Þ þ OðP2=d�1Þ

3546 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
of linear equations). Before a global operator can be applied to a global vector, the data in the ghost cells has to be updated or
synchronized with the corresponding data from the neighboring processors.

For non-local spatial discretization and/or solution methods (e.g. all Fourier methods) the static data decomposition is
inefficient because these discretization schemes operate on a relatively large number of (or even all) grid points along a coor-
dinate direction. Therefore, all data along this direction must belong to the same sub-domain. For operations in another
direction the sub-domains have to be redefined. In that sense, this decomposition method is dynamic. It results in a repeated
redistribution of the data. In two dimensions, this operation corresponds to a matrix transpose where the matrix entries are
redistributed from a column-wise to a row-wise storage.

3.2. Discussion of different strategies

In principle, both data decomposition methods (static and dynamic) can be used for a massively parallel implementation.
We will show in the following, however, that strategies based on a static decomposition may be better suited for the sim-
ulation of very large problems. This result applies for torus or mesh network topologies which are often used in modern
supercomputer architectures (e.g. in Cray XT supercomputers with a 3D-torus). Other networks such as hypercube topolo-
gies [40] may lead to different results but will not be discussed here.

Ideally, we would like to increase the number of processors simultaneously with the problem size such that the simula-
tion turn-around time remains constant (weak scaling). Strong scaling capabilities (smaller turn-around time for a constant
problem size) is not the primary aim of our implementation (nevertheless, we will show in Section 8.2 that our strategy
exhibits also excellent strong scaling capabilities). In order to assess the weak and strong scaling capabilities, we compare
the numerical complexities of three different approaches listed in Table 1:

Strategy A A local discretization scheme (e.g. explicit finite differences, finite volumes, finite or spectral elements) with
ghost cell updates using a static domain decomposition. Elliptic problems are solved with a multigrid-precon-
ditioned Krylov subspace solver.

Strategy B Compact finite differences [25] parallelized by solving an auxiliary problem [30], i.e. a Schur complement prob-
lem, using a static domain decomposition. Elliptic problems are solved with a multigrid-preconditioned Krylov
subspace solver.

Strategy C Fourier spectral discretization with FFTs and global data transpositions using a dynamic domain decomposi-
tion. Elliptic problems are solved in Fourier space.

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3547
In strategy A and B, we focus only on multigrid-preconditioned Krylov subspace solvers because they are very well suited
for this kind of problem, see Section 5.2. We will first discuss the complexities of the differentiation operators of strategy A
and B, followed by the complexity of multigrid and strategy C. For simplicity, we assume in this section that the computa-
tional domain with Nd grid points has the same dimension d as the network torus. The domain is distributed to P processors
such that each sub-domain contains NdP�1 grid points. These sub-domains are cubes with edge length NP�1=d for the static
decomposition and sticks of length N and width NP�1=ðd�1Þ for the dynamic decomposition.

The computational complexity of strategy A is governed by the application of d differentiation stencils of length n on the
NdP�1 data points in the sub-domain. Because only the ghost cells must be communicated to the nearest neighbours, the
communication complexity is given for each dimension d by the product of the stencil width with the surface area of the
sub-domain. However, this complexity assumes that the neighboring sub-domains are mapped to neighbouring processors
(best processor mapping). In the worst case, communicating processor pairs have a distance of order P1=d (‘‘Manhattan Dis-
tance” [29]) which will lead to increased traffic on the whole network. This network contention is characterized by the factor
P1=d. The processor mapping does not play the same role for the strategies B and C because these methods send data across
the whole network anyway.

Compact finite differences [25] deserve a closer consideration because they offer higher accuracy compared to explicit
finite differences while the computational effort increases only slightly. The implicit part of such schemes leads to narrowly
banded matrices (provided that lexicographical ordering is used) which can be inverted efficiently with the Thomas algo-
rithm, for instance. Such schemes are non-local and could be used in combination with a dynamic data decomposition meth-
od. However, it is more favorable to use a static data decomposition because we need to apply also multigrid which requires
a static data decomposition as well as a large number of data exchanges. Strategy B is a popular method for using compact
finite differences together with a static decomposition. Its computational complexity consists of the work for the banded
sub-problems (first term) and the backward substitution of the (previously decomposed) Schur complement of size nP1=d

which has to be done dNd�1P1=d�1 times. The communication complexity of strategy B is governed by dNd�1P1=d�1 transmis-
sions of the solution vectors of the Schur problem of length nP1=d. Network contention adds a factor P1=d. As an alternative to
strategy B, pipelining algorithms are available for compact finite differences (e.g. [9,36]). The algorithm described in [9]
scales as well as explicit finite differences (strategy A) but is limited to periodic directions. The method proposed in [36]
leads to load-balancing problems because of idling processors if the number of processors is not sufficiently small compared
to the number of grid points (more precisely P � Nd�1). Therefore, pipelining algorithms will not be considered here.

To apply a differentiation scheme in the framework of a dynamic decomposition (strategy C) we need to transpose almost
all data of size Nd over the network which has to be done Oðd� 1Þ times per sub-time step. The communication amount per
processor isOðNdP�1Þwhich leads to the overall communication complexityOððd� 1ÞNdP1=d�1Þ on a torus network [40]. Note
that the torus network always adds P1=d because ideal processor mapping is not possible.

So far, our analysis included only the differentiation operations as they are performed to evaluate the right-hand side of
the pressure equation, for instance. For solving an elliptic equation, such as the pressure Eq. (3), additional computations and
communications are required. For Fourier spectral methods (strategy C), this additional workload is negligible for the overall
complexity compared to the FFTs because the solution of an elliptic equation with NdP�1 grid points in spectral space has
complexityOðNdP�1Þ (FFT: OðdNdP�1 log NÞ). This is not the case for the strategies A and B. These strategies use iterative solv-
ers such as multigrid. For multigrid, the complexity for computations and communications is governed by the work on the
finest grids which scales like local discretization (strategy A). In parallel implementations, there is also the cost for the work
on the coarse grids which have fewer grid points than processors. The computational work on the coarse grids has the com-
plexity Oðd log PÞ because there are log P coarse levels and the work per level and processor has complexity OðdÞ. Of course,
the contribution of the coarse grids is usually very small. Similarly, the additional communication complexity on each of the
log P coarse grids is OðdÞ. Furthermore, the coarsest grids add the term OðP1=dÞ which accounts for the distance between the
remaining communicating processors in the d-dimensional torus network. These results for multigrid are adapted from [29].
Apart from pure multigrid it is often beneficial to use Krylov subspace methods as primary solvers which may use multigrid
as preconditioner (i.e. BiCGstab [42]). The costs for Krylov subspace methods with short recurrence such as BiCGstab consist
of the costs for pure differentiation (strategy A or B), global vector–vector additions and scalar products which require com-
munication across the whole network. In either case, these costs are already covered by the complexity of the differentiation
plus multigrid and do not add any new dominant terms.

The weak and strong scaling properties of the different strategies follow immediately from the complexities and are also
listed in Table 1. For the weak scaling we maintain d, n and the size of the sub-domains constant, Nd=P ¼ const:, whereas we
keep d, n and N fixed for the strong scaling. The absolute magnitudes of the individual terms depend on the used algorithms,
the floating-point performance of the processors and the network bandwidth and latency. The best strong scaling capabil-
ities are to be expected from strategy C. Strategy A can only compete with an optimal processor mapping. However, we find
that strategy A without multigrid yields the best weak scaling properties, whereas strategy C is unable to yield a perfect
weak scaling. Strategy B is neither competitive in the strong nor in the weak scaling.

The weak and strong scaling properties for multigrid appear to void the advantages of strategy A over strategy C, because
strategy A with multigrid features now also algebraically growing terms. However, we have to stress again that the contri-
butions by the coarse grids are very small compared to the massive data exchanges in a transposition. This will be illustrated
in Section 8 where we will show that growing terms indeed do not contribute significantly to the overall cost which is mainly

3548 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
dominated by the computations and the ghost cell update. Therefore, strategy A is our best candidate for good weak scala-
bility. We use explicit finite differences in this study for simplicity reasons. This discretization allows a straightforward
implementation of high-order schemes and offers some flexibility with respect to the choice of the geometry and boundary
conditions. Other local discretization methods such as spectral elements would also be a viable choice since they offer sim-
ilar properties, but will not be discussed in this work. Our solution approach for the discretized form of Eq. (1) is described in
Section 5.2. It employs a combination of the previously mentioned iterative solvers and does not introduce any further
complexities.

4. Discretization

4.1. Temporal discretization

The efficiency of a time integration scheme is determined by the computational cost for advancing the solution at a given
level of accuracy by one time step and by the size of this time step. Typically, explicit schemes are less expensive per time
step, but may require shorter time steps than implicit schemes for reasons of numerical stability. The maximum time step
size for a stable time integration can be estimated from the Courant–Friedrichs–Lévy (CFL) condition. If only the convective
terms NðuÞ in Eq. (1a) are taken into account, we set the convective time step limit for three spatial dimensions to
Dt 6
sconv

maxXfju1jk̂N;1 þ ju2jk̂N;2 þ ju3jk̂N;3g
6 CFLconv=max

X

ju1j
Dx1
þ ju2j

Dx2
þ ju3j

Dx3

� �
: ð4Þ
If only the diffusive terms Lu are considered, a viscous time step limit applies,
Dt 6
svisc

maxXfðk̂2
L;1 þ k̂2

L;2 þ k̂2
L;3Þ=Reg

6 CFLvisc=max
X

1
Re

1
Dx2

1

þ 1
Dx2

2

þ 1
Dx2

3

� �� �
: ð5Þ
In this paper, the CFL numbers are defined as
CFLconv :¼ sconv

maxXfk̂N;1Dx1 þ k̂N;2Dx2 þ k̂N;3Dx3g
and CFLvisc :¼ svisc

maxXfðk̂L;1Dx1Þ2 þ ðk̂L;2Dx2Þ2 þ ðk̂L;3Dx3Þ2g
: ð6Þ
The parameters sconv and svisc are the stability limits of the time integration scheme for oscillating and non-oscillating solu-
tions, respectively, and k̂N;i and k̂L;i are the maximum modified wavenumbers of the spatial discretization of Nð�Þ and L,
respectively. The time step limits show that there is always a Reynolds number (and an according fine-grid spacing Dx) be-
low which the viscous time step limit is more restrictive than the convective limit. In practice, this occurs at (locally) very
fine spatial resolutions as we find them in direct numerical simulations. In large-eddy simulations the sub-grid scale model
could theoretically introduce an even stronger limitation than the viscous time step limit although this is normally not the
case.

Such time step restrictions can be avoided with an implicit time integration scheme. For Lu this results in a linear system
of equations, but for NðuÞ the implicit problem is nonlinear. Nevertheless, these fully implicit methods can be faster overall,
as shown by Choi and Moin [7] for turbulent channel flow. Normally, this is not the case, in particular, when accuracy
requirements impose a stronger limitation on the time step size than the stability limits (e.g. in transitional flows). In that
case, the increased computational effort per time step cannot be compensated by a larger step size. Here, we use a semi-im-
plicit scheme, where the nonlinear term NðuÞ is extrapolated in time (explicit time integration) while the linear part Lu is
treated implicitly, such that we obtain a linear system of equations. The time step Dt is then mainly constrained by the con-
vective termNðuÞ. In either case, the continuity Eq. (1b) is independent of time and must be satisfied at each time step which
requires an implicit treatment. The same holds for the pressure gradientrp since Eqs. (1a) and (1b) are coupled through the
pressure p. Such semi-implicit time integration schemes are analyzed in [21,41].

To obtain a temporal accuracy of at least second-order and to avoid the restrictive viscous time step limit, we use the
absolutely stable Crank–Nicolson scheme (CN) for Lu. The explicit time integration of NðuÞ is done with a low-storage
third-order accurate Runge–Kutta scheme (RK3-O3) by Wray [45]. The combination of the RK3-O3 scheme with the
Crank–Nicolson scheme was reviewed and applied by Spalart et al. [39]. With the definitions uð0Þ ¼ uðtÞ; uð3Þ ¼ uðt þ DtÞ
and the intermediate solutions uð1Þ ¼ uðt þ a1DtÞ; uð2Þ ¼ uðt þ ða1 þ a2 þ b2ÞDtÞ, the semi-implicit low-storage CN-RK3
scheme reads
uðmÞ � uðm�1Þ þ cmDtGpðmÞ ¼ cm

2
Dt LuðmÞ þ Luðm�1Þ	

þ amDtNðuðm�1ÞÞ þ bmDtNðuðm�2ÞÞ; m ¼ 1;2;3: ð7Þ
The coefficients am; bm and cm are listed in Table 2. For consistency with the Crank–Nicolson scheme, we must have
cm ¼ am þ bm. This semi-implicit time integration leads to a coupled system of linear equations for the velocity uðmÞ and
the pressure pðmÞ of the new sub-time level m,
HðmÞ cmDtG
D 0

" #
uðmÞ

pðmÞ

" #
¼ f ðuðm�1Þ; uðm�2ÞÞ

0

" #
; m ¼ 1;2;3; ð8Þ

Table 2
Coefficients of the semi-implicit CN-RK3 time integration scheme.

m am bm cm

1 8/15 0 8/15
2 5/12 �17/60 2/15
3 3/4 �5/12 1/3

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3549
where HðmÞ is the Helmholtz operator,
2 In p
be discr
HðmÞ ¼ 1� cm

2
DtL; ð9Þ
and f ðuðm�1Þ;uðm�2ÞÞ contains the remainder of Eq. (7). The solution of the linear system (8) is typically by far the most time-
consuming part of a simulation. For a purely explicit time integration, the Helmholtz operator becomes the identity operator
(except for the boundary conditions) and the linear system (8) can be reduced to a single Poisson problem for the pressure.

4.2. Spatial discretization

For simplicity, the present work introduces a spatial discretization in a rectangular domain on a Cartesian grid with arbi-
trary grid stretching. Furthermore, a more complex domain can be realized easily using the immersed interface method [26]
or the immersed boundary method [35] at no significant additional cost.

We use explicit finite differences of high convergence order for the spatial discretization of Eq. (8). This leads to a linear
system of equations of the form
H G
D 0

� �
u
p

� �
¼

f
0

� �
ð10Þ
which has to be solved in each sub-time step of the time integration scheme (for the ease of writing, we have dropped the
index m for the sub-time step level). The vector u ¼ ½ui� denotes the discretized velocity and p represents the discretized
pressure. The matrices D and G are the discrete forms of the divergence operator D and the gradient operator cmDtG, respec-
tively2. The discrete Helmholtz operator is given by
HðmÞ ¼ J� 1
2

cmDtL ð11Þ
where L stands for the discrete form of the linear operator L. The matrix J is equal to the identity matrix I except that the
rows which correspond to boundary points hold the velocity boundary conditions. The corresponding rows in L (as well as in
G) are left blank. Therefore, the pressure gradient Gp is only applied to the grid points of the inner field. In contrast, mass
conservation is required everywhere and Du ¼ 0 is imposed at all points.

4.2.1. Staggered grid
As we will describe in Section 5.2, we derive an equation for the pressure by forming the Schur complement [47] of Eq.

(10),
DH�1Gp ¼ DH�1f: ð12Þ
If DH�1G has only one zero eigenvalue (and a rank deficit of one, respectively) which accounts for the undefined pressure
constant then DH�1G is h-elliptic [2,4]. This property is not only necessary for a unique pressure (apart from the undefined
constant) but is also a precondition for the convergence of multigrid-based solvers applied to such problems (cf. Section
5.2.2). A necessary condition for h-ellipticity is that the matrices D and G have at least the same rank as DH�1G (the Helm-
holtz matrices H are required to be non-singular anyway). Since G must additionally provide a right null space of rank one for
the pressure constant, G must have exactly the same rank as DH�1G for h-ellipticity.

To judge whether a spatial discretization satisfies the requirements on G ¼ ½GT
1GT

2GT
3�

T it is convenient to map Gi first onto a
uniform grid and to investigate the discrete Fourier transform (referred to as ‘‘symbol”) of each matrix row of G0i ¼ MiGi with
wavenumbers ki subsequently. The rank of the right nullspace of G increases by one with each resolvable wavenumber
k ¼ ½k1; k2; k3� for which all symbols of all G0 ¼ ½G0T1G0T2 G0T3 �

T are zero. Hence, we can ensure the desired rank of G and Gi if each
of the symbols of G0i is non-zero for any resolvable non-zero wavenumber ki. Similarly, it can be shown that D and its sub-
matrices Di have their full ranks if the discretization satisfies the same requirements as for Gi.

On equidistant colocated grids (function values and their derivatives are stored on the same grid points) any odd spatial
derivative of the grid cut-off wave number cannot be represented because information about either the amplitude or the
phase shift of the wave is missing. Hence, the rank of the right null space of G becomes larger than one, such that DH�1G
ractice, it is more convenient to work directly with G and to substitute p with cmDtp instead such that G (and all other operators building on it) needs to
etized and stored only once.

x1

x2

p

u

v

Fig. 2. Staggered grid in two dimensions near boundaries.

3550 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
cannot be h-elliptic without appropriate measures. Fourier pseudospectral methods, for instance, allow an explicit handling
of this mode by setting it simply to zero in spectral space [3]. Other discretizations require artificial ‘‘damping” of the higher
wavenumbers to make DH�1G h-elliptic [2]. On staggered grids, however, the symbols of D and G are typically non-zero for
any resolvable non-zero wavenumber, such that DH�1G normally is h-elliptic.

Therefore, we use finite differences on staggered grids for the velocity and the pressure (Fig. 2). We work with four sub-
grids: one for each velocity component and one for the pressure. The pressure grid is labeled 0 and the velocity grids are
labeled 1, 2 or 3 (corresponding to the direction of the velocity component). The momentum equations are solved on the
respective velocity grids, and the continuity equation is satisfied on the pressure grid. Hence, the discrete divergence oper-
ator D computes first derivatives on the grid 0 from values on the grids 1, 2 and 3, whereas the discrete gradient operator G
computes first derivatives on the grids 1, 2 and 3 from values on grid 0. Dirichlet boundary conditions for the tangential
velocity components can be applied directly to the grid points on the wall. The normal velocity component has to be imposed
by interpolating between virtual grid points beneath the boundary and grid points just above the boundary.

The discrete form of the convective operator in NðuÞ involves products between velocity components and the first deriv-
ative of other velocity components. In this context, the first derivative on the grid i in the direction j is represented by the
discrete operator Ci;j,
@ð�Þi
@xj
� Ci;j: ð13Þ
In general, the convective operator must transfer data between the velocity grids. To this end, the discrete interpolation
operators Ti;0 and T0;j are introduced which interpolate function values from the pressure grid 0 onto the velocity grid i
and values from the grid j onto grid 0, respectively. Hence, the local velocity on grid i is
uj;i ¼ Ti;0T0;juj: ð14Þ
The components of uj;i are multiplied with the components of the first derivative Ci;jui and the discretized nonlinear terms
NðuÞ in convective formulation take the final form
uj
@ui

@xj
� diagfuj;igCi;jui; ð15Þ
where diagfuj;ig is a diagonal matrix with the components of uj;i as diagonal entries.

4.2.2. Finite difference stencils and non-uniform grids
Rather than applying metric terms to differentiation operators for equidistant grids, we introduce the grid stretching by

computing the finite difference coefficients directly on the stretched grid for reasons of accuracy. To find the stencil coeffi-
cients with n points for the dth derivative at x	 we define the square matrix B,
B ¼ ½bij� ¼ ½Dxj�1
i �; i; j ¼ 1;2;3; . . . ;n; ð16Þ
where Dxi ¼ x	 � xi (Fig. 3). The stencil coefficients ci are then given by the ð1þ dÞth column of the inverse transpose of B,
ci ¼ d!½B�T �i;ð1þdÞ: ð17Þ
This scheme preserves the full accuracy for polynomials of order n� 1. For d ¼ 0 we obtain an interpolation operator.
We use upwind-biased finite differences for the discretization of Ci;j to provide an anti-aliasing filter for under-resolved

flows [27]. In these schemes, the outermost coefficient on the downwind side of the stencil is set to zero (Fig. 4). The

Fig. 3. Finite difference stencil with coefficients ci and coordinates xi . The derivative is computed at x	 .

Fig. 4. Upwind-biased finite difference stencils.

Fig. 5. Modified wave numbers of different upwind-biased schemes ðð�Þ OðDx3Þ; ð
Þ OðDx5Þ; ðMÞ OðDx7Þ; () real part, (- - -) imaginary part).
Left: transfer function, right: relative error.

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3551
downwind side for the derivative Ci;j in the direction j on the grid i is indicated by the sign of the local convection velocity uj;i.
The modified wave numbers of such schemes have an imaginary part which damps the solution especially at high wave
numbers (Fig. 5). The real part of the modified wave number is exactly the same as for the central scheme with the same
stencil width [27]. Therefore, upwinding does not affect the dispersion properties, but controls the accumulation of kinetic
energy in the large wave numbers.

For the present implementation, we focus on achieving a certain overall convergence order rather than a certain overall
absolute discretization error as done by Simens et al. [38], for instance. In that sense, the convergence order of all spatial oper-
ators should be more or less the same on each grid point to avoid extra work. Hence, we choose the same (central) stencil
width n for all operators. In the interior of the domain, the following rules apply: If a variable and its derivative are defined
on the same grid, which is the case for the operators L; H and C, the convergence order is n� 1 for a central stencil (typically,
n is an odd number). Only the upwind-biased schemes in Ci;j have a zero coefficient on the downwind side which gives a
convergence order of n� 2. All other operators (D; G and T) transfer information between different grids. In such cases,
the stencil widths and the convergence orders are identical. We choose them to be n� 1 in order to be consistent with
the convergence orders of the other operators. In practice, we use five different sets of finite difference stencils (Table 3).
As an example, the d3 differentiation scheme is sketched in Fig. 6.

5. Iterative solution

In this section, we discuss the solution of the system (10) by iterative methods. Usually, direct solvers (except FFT-based
methods, cf. Section 3.2) have an unfavorable numerical complexity which limits them to problems with only small numbers
of unknowns. However, there exist efficient iterative solvers which are much better suited for this type of problem. Further-
more, iterative methods allow a direct control of the solution accuracy.

Table 3
Convergence order (and number of non-zero coefficients) of the finite difference stencils on the first few grid points starting from the boundary. The first pair of
numbers corresponds to the grid point on the boundary (colocated) or next to the boundary (staggered), cf. Fig. 6.

Name Truncation error Grid Convergence order (number of coefficients)

d1 OðDx1Þ Colocated 1(2) 1(3) 1(3) . . .

Staggered 2(2) 2(2) . . .

d2 OðDx2Þ Colocated 2(3) 2(4) 3(5) 3(5) . . .

Staggered 2(3) 4(4) 4(4) . . .

d3 OðDx3Þ Colocated 3(4) 3(5) 3(5) 5(7) 5(7) . . .

Staggered 3(4) 4(4) 6(6) 6(6) . . .

d4 OðDx4Þ Colocated 4(5) 4(6) 4(6) 5(7) 7(9) 7(9) . . .

Staggered 4(5) 4(4) 6(6) 8(8) 8(8) . . .

d5 OðDx5Þ Colocated 5(6) 5(7) 5(7) 5(7) 7(9) 9(11) 9(11) . . .

Staggered 5(6) 5(6) 6(6) 8(8) 10(10) 10(10) . . .

3552 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
5.1. Schur complement formulation

Rather than applying an iterative solver to the original system (10) it is beneficial to transform or rearrange the problem
(e.g. [23,24,44]) before applying preconditioned iterative solvers to the resulting (sub-)problems. To this end, we eliminate
the zero diagonal block in Eq. (10) and obtain the Schur complement for the pressure,
3 In t
problem
H G
0 DH�1G

� �
u
p

� �
¼

f
DH�1f

� �
: ð18Þ
Eq. (18) can then be solved with a preconditioned Richardson iteration, for instance. Equivalently, we can factorize the block
matrix in Eq. (10) in a block-LU decomposition,
H G
D 0

� �
¼

I 0
DH�1 �I

� �
H G
0 DH�1G

� �
; ð19Þ
and use the inverse of the lower triangular matrix as a transformation matrix for Eq. (10). In combination with a precondi-
tioned Richardson iteration, this leads to a so-called l-transforming iteration, [44].

The block matrix in Eq. (18), or more precisely, the Schur complement matrix has normally exactly one zero eigenvalue
(related to the pressure constant). If we ensure that the linear system of equations has at least one solution, we do not need
to remove this singularity. Then, the employed iterative solution techniques are either able to handle such rank-deficient
problems (Richardson iteration, multigrid with Gauss–Seidel smoothing) or do not lead to any complications in practice
(BiCGstab3). In that sense, the matrix exponent ð�Þ�1 does not refer to the inverse of a matrix (which might not exist) but indi-
cates the application of a linear solver. The method which we use to ensure the solvability of Eqs. (10) and (18) will be described
in Section 5.6.

Theoretically, we can find the pressure by solving the problem
Ap ¼ b; ð20Þ
with A ¼ DH�1G and the right-hand side b ¼ DH�1f. Once the pressure is found, the velocities can be determined from
Hu ¼ f � Gp: ð21Þ
Typically, both sub-problems are still too large for a direct solution and also a further reduction to smaller sub-problems is
normally not practical.

Before we discuss the solution of Eqs. (20) and (21) we define the measure b for characterizing H, because this operator
appears in both equations and plays a major role in the iterative solution process,
b � Dt
2
kLk1 P

Dt
2

max
X

1
Re

k̂2
L;1 þ k̂2

L;2 þ k̂2
L;3

� �� �
: ð22Þ
In practice, we find that the right-hand side of this inequality is almost equal to b which indicates that it scales like the tem-
poral stability limit svisc in Eq. (5). Therefore, a (semi-)implicit time integration can be more efficient, if the viscous time-step
limit is more restricting than the convective limit, i.e. if
2b ’ svisc: ð23Þ
heory, the BiCGstab recurrence can break down before the exact solution is found even without this singularity. A modified algorithm to avoid such
s was proposed by Moriya et al. [33].

(b)

(a)

(c)

Fig. 6. Finite difference stencils of the d3 scheme near the boundary. Differentiation scenarios: (a) from a velocity grid to the same velocity grid, (b) from a
velocity grid to the pressure grid and (c) from the pressure grid to a velocity grid.

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3553
Typically, the maximum modified wavenumber k̂ of any spatial derivative increases with the convergence order and the
stencil width n of the discretization. For central discretizations of L, derived from Eq. (17), we find that 2 6 k̂L;iDx < p, such
that b is in the order of Dt=minX;ifReDx2g. Hence, large values of b correspond to a (locally) fine spatial resolution and/or to a
coarse temporal resolution for a given Reynolds number Re.

5.2. Pressure iteration

The large matrix A ¼ DH�1G in the pressure Eq. (20) is dense due to H�1, such that it cannot be stored explicitly. Because A
is a Laplacian operator for b ¼ 0 and has a zero eigenvalue anyway, the condition number jðAÞ :¼ jkmaxðAÞj=jkminðAÞj based on
the eigenvalues kðAÞ is infinity. Hence, typical primary iterative solvers (such as Krylov subspace methods) will not work
efficiently without an appropriate preconditioner. Luckily, there exist some efficient preconditioners eA (at least for certain
ranges of b) such that the pressure equation can be solved in most cases with a moderate number of iterations with the pre-
conditioned Richardson iteration scheme. It reads
plþ1 ¼ pl þxeA�1rl
A; ð24Þ
with a relaxation parameter x to be defined and the residual
rl
A ¼ b� Apl ¼ DH�1ðf � GplÞ � Dul: ð25Þ
The error in the pressure field is defined as
el
A ¼ p� pl ¼ A�1rl

A: ð26Þ
Because el
A is usually not accessible, the termination criterion for the iterative scheme is formulated for the residual,
krl	

A k 6 �A; ð27Þ
with some threshold �A P 0 and the corresponding iteration count l	. The pressure iteration is illustrated in Fig. 7 (the details
on the preconditioner eA are described in Section 5.2.1). As initial guess p0, we use the pressure field from the previous sub-
time step, because the flow and pressure fields will change only very little between sub-time steps. Otherwise, a zero initial
guess may be more favorable.

The Richardson iteration converges toward the exact solution if the spectral radius qðI�xeA�1AÞ is less than unity. Along
the same line of thought, we see that the convergence ratio krlþ1

A k2=krl
Ak2 is bounded by qðI�xeA�1AÞ if eA�1A is Hermitian.

This may not be the case if non-equidistant grids and/or high convergence orders at boundaries are employed, such that the

Fig. 7. Flow chart of the pressure iteration with the preconditioner (30). The vectors p0 and y are only temporary variables in the context of the
preconditioner.

3554 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
spectral radius is only an estimate of the convergence ratio. These relations stress the importance of a good preconditioner eA,
i.e. a preconditioner which is ‘‘close” to the problem matrix A. In addition to the convergence ratio, we define also the con-
vergence rate as � logðkrlþ1k=krlkÞ for future use.

We assume for simplicity that the number of iterations to solve Eq. (20) depends primarily on the parameter b but not on
the problem size or the degree of parallelization which. This assumption is actually supported by the results in Sections 7 and
8. Hence, the complexity to solve the equation is given by the complexity of the Richardson iteration (24) plus the complex-
ities to apply A ¼ DH�1G and the preconditioner eA�1. The latter will be discussed in the following sections.

5.2.1. Preconditioner for the pressure iteration
The inverse of A is dense due to the elliptic problem character and the same will hold for a good preconditioner eA. There-

fore, eA must be a forward-type preconditioner [6] which means that we apply the preconditioner by solving at least one sys-
tem of equations. This makes sense only if the cost for solving the preconditioner problem is much smaller than the cost for
the unpreconditioned problem. Therefore, the preconditioner should be readily accessible and must not contain a dense ma-
trix such as H�1.

It is straightforward to approximate H�1 in A with an explicitly accessible operator eH�1. Brüger et al. [5] choose eH ¼ J
such that they obtain a Laplacian preconditioner,
eA ¼ DJ�1G: ð28Þ
Obviously, this choice is only appropriate if b is small. In such situations, however, explicit time integration schemes may be
more efficient anyway (as we will explain below). The well-known SIMPLE-type preconditioners [34] use improved approx-
imations to H�1 (e.g., eH�1 ¼ diagfHg�1) which are also easy to derive and have a sparse structure.

Other approaches try to approximate A ¼ DH�1G and not just H�1. Such a method has been proposed by Elman [11] for
steady-state problems, where H is a convection–diffusion operator. In its simplest version it reads

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3555
eA ¼ DGðDHGÞ�1DG: ð29Þ
Heuristically, this preconditioner is motivated by an attempt to commute H�1 and G. Alternatively, we can rewrite H as J�1JH
and commute H�1J�1 with G approximately which yields the preconditioner
eA ¼ DJ�1GðDJ�1HJ�1GÞ�1DJ�1G: ð30Þ
The same result can be derived for H ¼ HJJ�1 and an approximate commutation of J�1H�1 with G. The application of precon-
ditioner (30) within the pressure iteration is depicted in Fig. 7.

Tests have shown that the commutation-based preconditioners (29) and (30) provide the largest flexibility of all men-
tioned preconditioners with respect to the value of b (see also Elman et al. [10] for steady-state problems). However, their
application requires two solutions of Poisson problems with matrix DJ�1G. In the present implementation, we apply only the
preconditioner (30) because it is technically similar to the Laplacian preconditioner (28) and allows us to switch easily be-
tween them. Additionally, it will be demonstrated in Section 7 that the solution of two Poisson problems (rather than just
one) does not lead to significant extra work for small b if an adaptive termination threshold for the Poisson problems is used.
However, a more detailed analysis of the preconditioner is not in the scope of the present study.

It is a disadvantage of the SIMPLE-type preconditioners that they contain the Helmholtz matrix H and thus the sub-time
step size cmDt implicitly, such that they have to be stored separately for each sub-time step and need to be recomputed as
soon as Dt changes. Unlike the SIMPLE-type methods, the commutation-based preconditioners (29) and (30) contain the
Helmholtz matrix H explicitly which avoids these technical hurdles.

Problems with large b require more computational effort, since for any of the mentioned preconditioners eA=x is an
increasingly poor approximation to A as b increases. At a certain point, the spectral radius qðI�xeA�1AÞ is larger than unity
and the Richardson iteration diverges. For a given mesh width Dx and Reynolds number Re this can be avoided by choosing
either a smaller x or by reducing the time step size Dt to reduce b. As mentioned earlier, b scales like the stability limit svisc in
Eq. (5) which means that b can theoretically impose a ‘‘viscous” time step limit for (semi-)implicit schemes for a given x. As
a consequence, very small b indicate that a fully explicit time integration scheme may be more efficient overall because H
equals J such that exactly one pressure iteration (24) already leads to the exact solution. Nevertheless, at least one Poisson
problem has to be solved, generally.

The complexity to apply eA�1 equals the complexity to apply ðDJ�1GÞ�1 (cf. Section 5.2.2) plus the complexities of D; G; H
and J�1 which were discussed in Section 3.2. Note that J�1 is trivial to compute directly since only the boundary conditions
need to be inverted.

5.2.2. Solution of the Poisson problems in the preconditioner
The preconditioner (30) includes two Poisson sub-problems of the form
Kx ¼ h; ð31Þ
with the Laplacian operator K ¼ DJ�1G. It is solved iteratively (iteration count j) with the termination criterion krj	

K k 6 �K . The
finite difference stencils for D; J and G derived from Eq. (17) are generally non-symmetric due to non-uniform grids and
boundary conditions, such that K is non-symmetric either. However, K approximates the continuous negative-semidefinite
operator DGwhose eigenvalue spectrum is purely real. Hence, we find that the imaginary parts of the eigenvalues of K are at
least nearly zero if the grid is moderately stretched. Their real parts are located within the interval ½�kKk1; kK� diagfKgk1�
kdiagfKgk1� � ½�kKk1;0� which follows from Gerschgorin’s theorem [13]. Additionally, the eigenvalues are more or less
evenly distributed (depending on the symbols of K) and scale with 1=Dx2. Generally, such an eigenvalue spectrum leads
to a small convergence rate for the unpreconditioned Richardson iteration or Krylov subspace methods because of the unfa-
vorable conditioning of K [13]. However, the distribution and scaling properties of the eigenvalues can be exploited by mul-
tilevel methods such as multigrid. The high-frequency parts of the solution, corresponding to large absolute eigenvalues, can
be found very efficiently by so-called smoothers such that successive smoothing, restriction and prolongation operations al-
low an effective treatment of all parts of the solution. The Gauss–Seidel iteration is known to be the most efficient smoother
in this context.

In the present implementation, we solve Eq. (31) with the Krylov subspace method BiCGstab [42] with right precondition-
ing. We use a geometric multigrid scheme as a preconditioner, such that eK�1 stands for one application of multigrid with a
V(m,m)-cycle [14] at a grid coarsening factor of two in all spatial directions. The variable m indicates the number of smooth-
ing sweeps on each grid level. The convergence rate is limited by the efficiency of the smoothers and by the accuracy of the
restriction and prolongation operators. The restriction is performed by injection and the prolongation operators are second-
order accurate. It is usually sufficient to use only a second-order discretization within multigrid since the error caused by the
different discretizations of eK and K is normally only a small part of the total approximation error of eK�1 with respect to K�1.
On the coarser grid levels this discretization error is small anyway. Also the weak diagonal dominance of the square matrices
is ensured with this discretization. Algebraic multigrid can be an attractive alternative because it does not require the ex-
plicit definition of coarser grids (aggregation) such that it is more convenient to apply in the case of more complex grids.
However, the direct grid definition in the geometric version can lead to a larger convergence rate with respect to the number
of floating-point operations. Additionally, with a Cartesian grid and a geometric multigrid method the present implementa-
tion requires only a minimum of data storage which is also beneficial for the performance on typical microprocessors.

3556 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
Since small wavelengths of the solution require sufficiently coarse grids it is crucial for the solver performance that these
grids are provided in the implementation. This is often problematic on parallel architectures since the communication time
on these coarse grids increases with the number of processors as discussed in Section 3.2 for torus networks. For maximum
efficiency and to yield the complexity of the coarse grids given in Section 3.2 we need to redistribute the coarse-grid prob-
lems on the network during the V-cycles in order to minimize the communication distance.

A good choice for a smoother is important for the performance of the multigrid preconditioner. Under certain conditions
Chebychev smoothers are competitive with ordinary Gauss–Seidel smoothers in terms of convergence rates [1]. Such poly-
nomial approaches allow a simple and straightforward parallel implementation but are not free of tuning parameters. Also
the computational effort can be expected to be larger than for Gauss–Seidel smoothers in our application. In this work, we
use either processor-block Gauss–Seidel smoothing [17], red-black ordered Gauss–Seidel or combinations of both. Processor-
block Gauss–Seidel is not a genuine Gauss–Seidel method because lexicographically ordered Gauss–Seidel smoothers run
separately on each of the sub-domains which are coupled only in a Jacobi-like fashion. For small numbers of grid points
per sub-domain and large numbers of processors the Jacobi characteristics dominate and vice versa. If the grid is strongly
anisotropic, i.e. if the grid spacings Dx vary significantly in at least one direction, standard splittings such as the Jacobi or
the Gauss–Seidel method are likely to fail because smoothing of the solution in other directions with larger Dx becomes inef-
ficient. Therefore, we treat strongly stretched grid lines implicitly within each processor-block to accelerate the convergence.
The procedure is often termed line relaxation and may be applied in alternating directions, if necessary.

Because the residual rl
A in Eq. (24) is usually unrelated to the residual from the previous iteration rl�1

A , a zero initial guess
appears to be the best choice for the first Poisson problem in Eq. (30). The solution of the second Poisson problem is close to
the solution of the first (especially if b is small) such that the latter can be used as an initial guess for the second problem.

The number of iterations to solve Eq. (31) with BiCGstab and multigrid is typically of order one and does not depend on
the problem size or the degree of parallelization. Hence, the total complexity to compute K�1h is given by the complexities of
K, the contributions of the primary BiCGstab solver and the multigrid preconditioner which were discussed in Section 3.2.

5.3. Helmholtz problems

Since the computation of the residual rl
A requires the solution of
Hul ¼ f � Gpl; ð32Þ
with the velocity ul as an intermediate result, a separate solution of Eq. (21) is usually not necessary once the residual of
the pressure equation is sufficiently small. Eq. (32) is solved iteratively and terminated after k ¼ k	 iterations when the
residual
rl;k
H ¼ f � Gpl �Hul;k ð33Þ
satisfies the termination criterion
krl;k	

H k 6 �H; ð34Þ
with the threshold �H P 0.
The continuous operatorH is positive definite and has a purely real eigenvalue spectrum in which the smallest eigenvalue

is exactly one. Because the discrete operator H has nearly the same properties (if the grid is only moderately stretched), its
condition number is bounded by jðHÞ 6 jmax � 1þ b. Because b is sufficiently small in practice, we can solve Eq. (32) with
the unpreconditioned Krylov subspace method BiCGstab [42] which converges fast for small condition numbers. In cases
where b is large, the Helmholtz problems tend to have Poisson problem character such that they can be treated similarly
as the Poisson problems in the previous section. In terms of computational cost, the solution of the Helmholtz problems
is typically equally or less expensive than the application of the preconditioner eA.

Since the flow field u from the previous sub-time step is usually closer to the solution of the present sub-time step than
the zero initial guess, it is mostly the better initial guess for the first instance of the Helmholtz problem in the pressure iter-
ation (24). All later solutions during the pressure iteration ðl P 1Þ are related to the previous solution by
ulþ1 ¼ ul þH�1Gðpl � plþ1Þ such that the difference between ulþ1 and ul depends only on the convergence rate of the pressure
iteration. Therefore, the previous solution is usually the best initial guess.

Because the eigenvalue spectrum of H depends strongly on b, the number of iterations to solve Eq. (32) with BiCGstab to a
given accuracy level will mostly depend on b but not on the problem size or the degree of parallelization. Hence, the com-
plexity to solve the equation is given by the complexity of H and the contributions of the BiCGstab solver, cf. Section 3.2.

5.4. Relations between the termination criteria and the solution accuracy

Even if Eqs. (20) and (21) are solved exactly, the accuracy of the flow field u is limited by the error of the discretization
scheme. In addition, the iterative solver creates an iteration error which can be limited by setting appropriate termination
criteria. For efficiency reasons, this error should not be required to be much smaller than the discretization error.

The absolute iteration error eit of the velocity u ¼ H�1ðf � GpÞ can be written as

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3557
eit ¼ eH þ eP þ eHP; ð35Þ
where eH is caused by the inexact solution of the Helmholtz problems, eP by the inexact pressure and the remainder, eHP ,
multiplicatively by both, the inexact Helmholtz problems and the inexact pressure (for the ease of writing we omit the iter-
ation indices k; l). Further, it follows from the divergence condition Du ¼ 0 and Eq. (25) that the divergence error is equal to
the residual of the pressure problem such that rA ¼ Deit ¼ DðeH þ eP þ eHPÞ. Provided that we are able to find the pressure
exactly, the residual of the continuity constraint is still rA ¼ DeH ¼ DH�1rH . Hence, we cannot expect in general that the
residual krAk of the pressure equation can be reduced below
�A;min ¼ sup
krHk6�H

kDH�1rHk ð36Þ
for a given threshold �H . In other words, �H must be chosen sufficiently small to allow the pressure iteration to reach the
desired accuracy level �A, i.e. we have to require that at least
�A P �A;min: ð37Þ
Because it is difficult to compute �A;min, we use instead (with consistent matrix norms k � k)
�A ¼ kDkkH�1k�H ð38Þ
and tolerate the lower accuracy of the overall solution. In general, kH�1k is not easy to compute either. At least for directly
applied Dirichlet boundary conditions and the infinity norm k � k1 we know by design that each row sum of H�1 must be
exactly one. For discretizations with a stencil width of n ¼ 3 the matrix H�1 is positive because H is then a M-matrix [12].
Unfortunately, the Dirichlet boundary conditions involve interpolations such that the corresponding rows of H�1 inevitably
contain elements with alternating sign. Hence, we conclude that kH�1k1 P 1. There is no indication that b has a significant
influence on kH�1k1 and we will also find from the numerical experiments in Section 6.2 that kH�1k1 is of order one. For
boundary conditions other than Dirichlet such an estimate is more difficult.

Next, we try to relate the thresholds �H and �A to the absolute iteration error eit . Normally, we can assume that the mixed
error eHP is much smaller than eH and eP , such that Eq. (35) can be approximated by
eit � eH þH�1GeA; eHP �minðeH; ePÞ: ð39Þ
If we use Eq. (38) to relate �A to �H we can bound the absolute velocity-error by
eit ¼ keitk / �HkH�1kð1þ kDkkH�1GA�1kÞ: ð40Þ
Numerical tests (see Section 6.2) and scaling arguments indicate that kDk1kH
�1GA�1k1 scales roughly like 1=Dx for Dirichlet

boundary conditions. In practice, we estimate kH�1k and kH�1GA�1k such that we can determine �H and �A for the desired
value of eit according to Eqs. (40) and (38), respectively.

In contrast to our approach, Brüger et al. [5] formulate a termination criterion for the residual for the entire problem (10)
which in our notation can be written as kðrT

HrT
AÞ

Tk 6 �. However, this approach does not take any efficiency considerations into
account, since the continuity constraint and the momentum equations are treated equally in this criterion such that the pres-
sure might be solved more accurately than necessary. To ensure the convergence of the pressure iteration they require
�H ¼ �K 6 C�, where the constant C depends only on the spectral radius of the Richardson iteration for the entire problem (10).

5.5. Termination criterion for the preconditioner

The solution of the preconditioning problem,
eADplþ1 ¼ xrl
A; ð41Þ
with Dplþ1 ¼ plþ1 � pl is typically the most time-consuming operation in the pressure iteration. Because the preconditionereA=x is only an approximation to A, it is not necessary to compute Dplþ1 up to machine precision. The error of the precon-

ditioning problem, elþ1eA ¼ xeA�1rl
A � Dplþ1, increases the error elþ1

A of the pressure and reduces the convergence rate of the

pressure iteration. Therefore, elþ1eA should be sufficiently small compared to elþ1
A .

In practice, we assume rlþ1eA � rlþ1
K and require that �lþ1

K ¼ /krlþ1
A kwith a relaxation factor / < 1. Unfortunately, krlþ1

A k is not
known beforehand, but we can estimate it by extrapolating the residuals of the previous time levels,
E krlþ1
A kt;m

� �
¼
Xs

i¼1

wikrlþ1
A kt�iDt;m; with

Xs

i¼1

wi ¼ 1: ð42Þ
The extrapolation weights wi can be found from Eq. (17) with Dt < 0 in place of Dx. In the present implementation, we simply
use s ¼ 1 and w ¼ 1. This extrapolation has to be done separately for each Runge–Kutta sub-time step m, because krlþ1

A kt;m

can be expected to be more or less smooth in t; t þ Dt; t þ 2Dt; . . ., but not in m. Then, the termination threshold for the pre-
conditioner at time t, sub-time step m and iteration lþ 1 is

3558 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
�lþ1
K;t;m ¼ /E krlþ1

A kt;m

� �
: ð43Þ
In practice, we find that / does not have to be much smaller than unity to obtain a good performance of the overall iteration
method. Especially in the case of coarsely resolved and unsteady flows, the convergence rates in the pressure iteration will
change more rapidly such that smaller / will adapt the termination threshold faster to the actual situation. Numerical tests
show that values between 0.1 and 1.0 are good choices for /. They do not need to be smaller because it can be cheaper overall
to tolerate a few more pressure iterations (because of a large /) than solving the preconditioner problem fewer times but
more accurately. Different to our approach, Brüger et al. [5] directly set �K ¼ �H such that the preconditioner problems
are normally solved too accurately.

5.6. Solvability

The singular system (10) has only a solution if the right-hand side is fully contained in the column space of the system
matrix. In this case the rank deficiency of the matrix is normally not a problem for the iterative solvers employed in this work
(cf. Section 5.1). A right-hand side which is not fully contained in the column space of the matrix indicates that the boundary
conditions try to enforce a net increase or decrease of mass which violates the mass conservation law. Unfortunately, this is
often the case, e.g. due to discretization errors at the boundary [5] or convective outflow boundary conditions [38].

There exist two different methods to resolve this problem: the easiest way is to prescribe the pressure artificially at least
one given point in space (which corresponds to a Dirichlet boundary condition for the pressure). Then A becomes non-sin-
gular and a solution always exists. The disadvantage of this method is that it replaces the governing equation at these grid
points by an artificial pressure constraint, such that the flow field is generally not divergence-free there. Additionally, the
solution is normally not smooth in these areas which can lead to stability problems especially in the case of large numbers
of grid points. We can interpret these points as mass sinks (or sources) which compensate for the net outflow (or inflow) due
to the boundary conditions.

In the present implementation an alternative method is employed which is similarly described in Simens et al. [38] for a
fractional step method. Rather than modifying the system matrix, the right-hand side b is corrected such that it lies in the
column space of A. Once a solution for the pressure is found, the undefined part of the solution (the absolute pressure level)
can be chosen freely by adding a constant to p. The left null space of A is the orthogonal complement to its column space. It
has rank one and can be represented by an arbitrarily scalable vector w which satisfies wT A ¼ 0. The right-hand side b must
then be orthogonal to w because
wT Ap ¼ wT b ¼ 0: ð44Þ
With
/ ¼ H�T DT
w; ð45Þ
the right-hand side f of the Helmholtz problem (21) must be orthogonal to /, i.e.,
/T f ¼ 0: ð46Þ
To satisfy Eq. (46), f is corrected to fcorr by projecting it along a vector onto the column space of A, i.e.,
fcorr ¼ f � /T f
/Th

h with /Th–0: ð47Þ
Then wT fcorr ¼ 0 is satisfied and the pressure equation has at least one solution. The projection vector h can be chosen freely
as long as it satisfies the restriction in Eq. (47). If, for instance, the boundary conditions shall be corrected only for one veloc-
ity component at one grid point the vector h is zero except at one entry. If the 2-norm of the correction, kfcorr � fk2, shall be
minimal we choose h ¼ / such that the correction Eq. (47) is an orthogonal projection of f onto the column space of A.

The vector w can be computed using the same methods as for solving Ap ¼ b. Because AT does normally not have the char-
acter of a partial differential equation, the application of geometric multigrid preconditioning can be difficult. The compu-
tation of / according to Eq. (45) is not problematic because preconditioning of the HT operator is usually not necessary,
similarly to H. However, H is different for each sub-time step and changes with the time step size, such that / (or at least
w) must be stored for each sub-time step and recomputed if the time step size changes. If this happens only a few times dur-
ing the simulation, extra costs due to an inefficient application of the multigrid method can be tolerated. In the case of a
purely explicit time integration scheme, H is equal to J and / is the same for all sub-time steps and all times.

The discussed solvability problem also applies to the sub-problems (31) inside the preconditioner and the same measures
have to be applied accordingly.

6. Validation

In this section, different aspects of the present implementation are checked for their correctness. For this purpose, we
define an absolute error e which compares the numerically found velocity u to the exact solution �u,

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3559
e ¼ ku� �uk1 ¼ eit þ ed: ð48Þ
In this context, ed is the absolute discretization error and eit is the absolute error due to the iterative solution. In addition, we
use only the infinity norm k � k1 for all matrix and vector norms.

All simulations are carried out for a periodic straight channel. The code is implemented in FORTRAN90 and uses the Mes-
sage Passing Interface (MPI). The relaxation factors are set to x ¼ 1 and / ¼ 0:1. The spatial coordinates x1; x2; x3 point in the
streamwise, wall-normal and spanwise direction, respectively. The reference values for the Reynolds number Re are the
maximum streamwise velocity at t ¼ 0 and the channel half-height. The grids are equidistant in the lateral directions and
only in the wall-normal direction the grid points are stretched according to
x2;i ¼ 1� cosðjðnþ i� 1ÞÞ
cosðjnÞ with i ¼ 1;2; . . . ;N and j ¼ p

N � 1þ 2n
ð49Þ
for different values of n (N denotes the number of grid points of the pressure grid). The grid is equidistant for n!1 and for
n ¼ 0 we obtain the Gauss–Lobatto points.

The iteration thresholds �H and �A are coupled according to Eq. (38) such that only one of them needs to be specified.
Because only Dirichlet boundary conditions are employed and we do not have a better estimate at hand, we simply assume
that kH�1k equals one though it is actually larger but still of order one. This is caused by the interpolations which are re-
quired to enforce the Dirichlet boundary conditions, cf. Section 5.4. Anyway, we need to satisfy Eq. (37) which is not violated
with our choice.

6.1. Convergence order

The convergence order of the discretization is tested in time and space by simulating a two-dimensional flow field in a
channel with the dimensions L1 � L2 ¼ 2� 2. It is given by
�u1ðx1; x2; tÞ ¼
1
2
½sinðk1x1Þ þ 1� sinðk2x2Þe�rt k2

k1
; ð50aÞ

�u2ðx1; x2; tÞ ¼
1
2
½cosðk2x2Þ � 1� cosðk1x1Þe�rt; ð50bÞ

�u3ðx1; x2; tÞ ¼ 0: ð50cÞ
In this section we choose the wave numbers k1 ¼ k2 ¼ p such that the maximum amplitudes of u1 and u2 are equal to one.
The corresponding pressure is determined from Eq. (3),
�pðx1; x2; tÞ ¼
1

16
cosð2px1Þ � cosð2px2Þ½ � þ 1

4
cosðpx2Þ � sinðpx1Þ þ sinðpx1Þ cosðpx2ÞÞ½ �

�
� 1

20
sinðpx1Þ cosð2px2Þ þ cosð2px1Þ cosðpx2Þ½ �

�
e�2rt : ð51Þ
This flow field has zero divergence, but the momentum Eq. (1a) is only satisfied if the residual
R ¼ @
�u
@t
�Nð�uÞ � L�uþr�p ð52Þ
is added as a forcing term to its right-hand side. Note that R needs to be computed at each Runge–Kutta sub-time step, cf.
Section 4.1.

The investigated parameter settings are listed in Table 4 with Nt as the number of time steps and N1; N2 as the numbers
of grid points in the two spatial directions. The grid is equidistant ðn ¼ 1Þ and the termination threshold �H ¼ 10�14 is set
close to machine accuracy such that e � ed.

6.1.1. Spatial convergence order
The spatial convergence properties are assessed by varying the number of grid points in both spatial directions simulta-

neously. The time dependence is eliminated by choosing r ¼ 0 such that no time integration error can occur. Because the
convective and the viscous terms in Eq. (1a) should have the same order of magnitude in this test (with respect to k1 and
k2) we set Re ¼ 10. With Dt ¼ 10�4 the number of iterations in the Richardson scheme (24) is about three to five.

Fig. 8 shows the absolute error e for the cases A and B. An inspection of the flow field indicates that the largest error in
both cases originates from grid points near the boundary. Because e measures the amplitude error, it grows like Dx4 (case A)
and Dx6 (case B), respectively. These convergence rates are equal to the smallest convergence rates in the respective discret-
ization schemes (cf. Table 3). If the phase errors were considered, we would expect the error to scale only like Dx3 and Dx5 (at
least for sufficiently small Dx). In case B, the error scales like Dx�1 for very small Dx and reaches a minimum of about 5 � 10�11.
This is probably related to small stencil coefficients which lead to a loss of significant digits. In addition, the matrix in Eq. (16)
is increasingly ill-conditioned with growing convergence order such that the accuracy of the finite difference coefficients is
limited.

Table 4
Parameters for convergence tests and tests of the termination criteria (L1 � L2 ¼ 2� 2; equidistant grids, n ¼ 1; discretization schemes from Table 3).

Case Re r Dt Nt ðN1 þ 1Þ, N2 Discretization

A 10 0 10�4 1 9 . . . 2 049 d3

B 10 0 10�4 1 17 . . . 2 049 d5

C 1 100 2:44 � 10�6 . . . 10�2 1 . . . 4 096 129 d5

D 10 100 2:44 � 10�6 . . . 10�2 1 . . . 4 096 129 d5

E 1 000 100 2:44 � 10�6 . . . 10�2 1 . . . 4 096 129 d5

F 10 10 10�4 1 257 d5

G 10 10 10�4 1 65 d5

Fig. 8. Absolute error e for cases A (h) and B (j).

Fig. 9. Absolute error e for cases C (�), D (h) and E (j).

3560 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
6.1.2. Temporal convergence order
A direct measurement of the time integration error requires that the spatial discretization error is negligibly small. We

achieve this with a high spatial convergence order in combination with relatively large time steps. In general, the time inte-
gration method (7) is only second-order accurate because the viscous terms are integrated with the Crank–Nicolson scheme
while the convective terms are integrated with a third-order accurate Runge–Kutta scheme. It depends on the magnitude of
ReDt whether the error is dominated by the convective or the viscous terms. This is demonstrated in Fig. 9 for the cases C, D
and E which differ only in their Reynolds number. For Re ¼ 10 (case D) the maximum error is dominated by the viscous terms
for small Dt and by the convective terms for large Dt. The discretization error ed � e scales like Dt2 and Dt3, respectively. If the
Reynolds number is sufficiently large (as in case E with Re ¼ 1000) the accuracy in the investigated range of time step sizes is

Table 5
Parameters for the numerical experiments to test the termination criteria of the solver (cf. Fig. 10).

Experiment Pressure problems Helmholtz problems �var �ref

1 (+) �A ¼ kH�1kkDk�ref �H ¼ �var 10�14 . . . 10�4 10�14

2 (h) �A ¼ kH�1kkDk�var �H ¼ �ref 10�14 . . . 10�4 10�14

3 (j) �A ¼ kH�1kkDk�var �H ¼ �var 10�14 . . . 10�4 n/a

var

e

10−2

10−2

10−6

10−6

10−10

10−10

10−14

10−14

var

e
10−2

10−2

10−6

10−6

10−10

10−10

10−14

10−14

Fig. 10. Absolute error e with respect to the termination criteria �H and �A for first (+), second (h) and third (j) experiment (left: case F, right: case G).

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3561
dominated by the convective terms leading to a third-order convergence rate. A purely second-order convergence rate can be
found for Re ¼ 1 (case C).

6.2. Termination criteria and solution accuracy

In this section, the influence of the termination criteria �H and �A on the absolute error e is tested. We use the same flow
configuration as in the previous section. In this test, it is necessary that the residual norm meets the desired level of accuracy
as closely as possible, i.e. we try to satisfy krk ¼ �� d with 0 6 d < � where d 6 krl	�1k � krl	 k should be as small as possible.
Therefore, the convergence rates must be kept very small such that the solution is approached in small steps. We achieve this
for the pressure iteration by using the Laplacian preconditioner (28) and by terminating the solver for the preconditioning
problem already when its residual has reached half the size of the current residual of the pressure iteration, i.e.
krlþ1

K k 6 0:5krl
Ak. The preconditioning problem uses only the plain BiCGstab solver (without multigrid preconditioning). Sim-

ilar measures are taken for the Helmholtz problems where we replace the BiCGstab solver by a plain Richardson iteration
without preconditioning. A zero vector is used as initial guess for all solvers.

As explained in Section 5.4, the termination threshold �H for the Helmholtz problems implicitly defines the termination
threshold �A for the pressure equation according to Eq. (38). To test this relation between �H and �A, the termination criteria
are varied independently in the following three numerical experiments (see also Table 5).

In the first experiment, we vary the termination threshold �H and solve the pressure equation very accurately by setting
�A ¼ kH�1kkDk�ref where �ref ¼ 10�14 is close to the machine precision. To obtain an accurate right-hand sides for the pres-
sure equation we compute the velocities first with a strict termination threshold �H ¼ �ref . Then, the velocities are computed
a second time with varied �H ¼ �var. The influence of �var on the absolute error e is shown in Fig. 10. As expected, we find that
e is only slightly larger than �H ¼ �var if the discretization error ed is not larger than the iteration error eit for small �var and if
the initial guess is not already accurate enough to satisfy the termination criterion for large �var;. This indicates that kH�1k is
obviously of order one.

In the second experiment, we keep �H ¼ �ref close to machine precision and vary �A ¼ kH�1kkDk�var instead. As shown in
Fig. 10, the absolute error e is now much larger than �var in the same parameter range of �var as in the first experiment. Be-
cause arithmetic errors are of the same order as before, the large difference must be related to the value of kDkkH�1GA�1k.
From the plots, we estimate that kDkkH�1GA�1k � 15 for case F and kDkkH�1GA�1k � 60 for case G which indicates that
kDkkH�1GA�1k � Dx�1 and kH�1GA�1k � Dx0.

In the third and final experiment, both termination criteria �H and �A are coupled according to Eq. (38) and varied simul-
taneously (�H ¼ �var). Fig. 10 shows that the error is comparable to the second experiment, because the total iteration error is
dominated by the pressure iteration and not by the residual of the Helmholtz problems. We also conclude that the coupling
of �A and �H according to Eq. (38) is indeed not too strict with respect to �A, because otherwise the termination criterion (27)
for the pressure iteration could only hardly be satisfied within a limited number of iterations. On the other hand, the

y

0

0

0.5

0.5

1

1

−0.5

−0.5

−1
−1

t

e r
el

0 100 200 300

10−1

10−2

10−3

10−4

10−5

Fig. 11. Left: shape of the normalized eigensolution scaled by expð�kitÞ. Lines: t ¼ 0, points: t ¼ 226:5 ðþu01;�u02; 	u03Þ. Right: evolution of the relative error
erel .

3562 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
iteration errors in the second and third experiment could be further reduced with smaller values for �A closer to �A;min (cf. Eq.
(36)).

6.3. Orr–sommerfeld and squire modes for poiseuille flow

In a next validation test, we simulate the temporal evolution of a three-dimensional Orr–Sommerfeld and Squire eigen-
mode for plane Poiseuille flow. The stream- and spanwise wave numbers of the tested mode are k1;3 ¼ 2p=L1;3 ¼ 1 and the
Reynolds number is set to Re ¼ 10000. The eigenvalue is k ¼ kr þ iki ¼ 0:2774� 0:02411 i which indicates a temporally
decaying solution. The extents of the physical domain are L1 � L2 � L3 ¼ 2p� 2� 2p which is discretized with the d3 scheme
on N1 � N2 � N3 ¼ 32� 129� 32 grid points. The grid is non-uniform in the wall-normal direction according to Eq. (49) with
n ¼ 10 to obtain a more accurate representation of the eigenmode near the walls. The time step size is limited to Dt ¼ 0:01
such that it is much smaller than its maximum value according to Eq. (4) and the time integration is more accurate. Non-
linear effects are negligible because the initial amplitude of the modal perturbation u0 ¼ ½u01;u02;u03�

T is very small with respect
to the base flow ubase ¼ ½1� x2

2;0;0�
T , i.e. ku0ðt ¼ 0Þk=kubasek ¼ 10�5. The termination threshold �H for the Helmholtz prob-

lems is adapted in each time step to the current disturbance magnitude according to �HðtÞ ¼ 10�7ku0ðtÞk such that a sufficient
accuracy of the iterative scheme is guaranteed at all times.

The shape of the perturbation is plotted in Fig. 11 for t ¼ 0 and for t ¼ 10 � 2p=kr ¼ 226:5. It shows clearly that the sim-
ulation yields the correct decay rate and that it maintains the shape of the eigenmode. Nevertheless, the relative error
erel ¼ ku0ðt ¼ 0Þ � u0ðtÞ expð�kitÞk=ku0ðt ¼ 0Þk of the solution increases in time because of the accumulation of temporal
and spatial discretization errors which trigger the growing Tollmien–Schlichting mode (Fig. 11).

6.4. Transitional channel flow

Next, we simulate a temporal transition from laminar to turbulent channel flow to validate the present implementation
for a more demanding flow configuration which involves strong nonlinear effects. To this end, we perform a direct numerical
simulation at Re ¼ 5000 ðRes ¼ 208Þ in a domain with the dimensions L1 � L2 � L3 ¼ 2p=1:12� 2� 2p=2:1. Because the fi-
nite difference discretization is less accurate at high wave numbers than a spectral discretization which is used for compar-
ison, we choose a finer resolution ðN1 � N2 � N3 ¼ 256� 257� 256Þ with the d3 discretization scheme. The grid is non-
uniform in the wall-normal direction according to Eq. (49) with n ¼ 16 to account for the higher resolution requirements
near the walls. The time step size is adjusted every tenth time step such that Dt � 0:5Dtmax according to Eq. (4). The initial
Poiseuille flow is perturbed by a two-dimensional stable Tollmien–Schlichting wave with a maximum amplitude of 3% of the
laminar center-line velocity and two oblique three-dimensional stable modes with amplitude 0.1%. The wave lengths of the
three perturbations are identical to the streamwise (and spanwise) extent of the domain and the bulk velocity is fixed to
ub ¼ 2=3 for all times. For further details on the flow configuration see [37]. The transition from laminar to turbulent flow
requires a sufficiently accurate representation of a large number of excited modes. A termination threshold of �H ¼ 10�8

was found to be sufficiently accurate for the transitional phase t ¼ 0; . . . ;200, whereas for the turbulent phase
(t ¼ 200; . . . ;1000) we chose �H ¼ 10�6. The simulation was carried out on a Cray XT3 supercomputer on P ¼ 8� 4� 8
CPU cores.

We compare our results to flow fields obtained with a pseudospectral simulation code (Chebychev series in the wall-nor-
mal direction and Fourier series in the lateral directions) which uses N1 � N2 � N3 ¼ 160� 161� 160 grid points and the
same CN-RK3 time integration scheme [37]. Note that the flow statistics in this reference simulation have been computed
on a coarser grid with 32� 33� 32 grid points. Fig. 12 shows that the evolution of Res matches the reference results quite

t

R
e τ

150

250

100
100

120 140 160 180 200

200

t

R
e τ

100

150

250

0 200

200

400 600 800 1 000

Fig. 12. Temporal evolution of Res compared to the results from Schlatter [37] (() present simulation, (---) reference solution; left: initial phase of
transition, right: full simulation).

Fig. 13. Hairpin vortex at t ¼ 136 (isosurface for k2 ¼ �0:1 [20]).

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3563
well. Differences between the two simulations are visible especially during the streak breakdown ðt � 160; . . . ;200Þ. They
are mostly related to slightly different initial conditions (e.g. different relative phase shifts between the three disturbance
modes). The formation of hairpin vortices is visualized in Fig. 13 which compares well to the plots in [37]. Finally, we exam-
ine different statistical measures for the turbulent flow field which are computed between t ¼ 500 and 1000. The mean
velocity profile (Fig. 14) matches the wall laws uþ ¼ yþ and uþ ¼ 2:5 logðyþÞ þ 5:5 very well. Also the Reynolds stresses
and the energy budget (turbulent production P, viscous dissipation due to mean flow strain emean, viscous dissipation due
to fluctuations efluct) are in close agreement with the reference results (Fig. 15).
7. Performance test of the preconditioners

To assess the preconditioner performance, we compare semi-implicit CN-RK3 time integration with explicit RK3 time
integration with respect to the elapsed times to integrate one time unit of turbulent channel flow. In these tests we distin-
guish between the commutation-based preconditioner (30) and the Laplacian preconditioner (28). For explicit time integra-
tion the Helmholtz matrix simplifies to H ¼ J, such that only one pressure iteration is necessary per sub-time step and the
Helmholtz problem becomes trivial to solve. Therefore, only one Poisson problem as in Eq. (31) remains to be solved and the
computational effort to integrate one time step a priori becomes smaller than for any (semi-)implicit method. Further, the
termination threshold for this equation changes correspondingly from Eq. (38) to �A ¼ kJ�1kkDk�H where kJ�1k is of order
one.

The specifications of the numerical setup (i.e. norms, grid orientation, Reynolds number and iteration thresholds) are the
same as in the beginning of Section 6. In this section, the multigrid preconditioner for the Poisson problems employs a V(2,2)
cycle. The extents of the physical domain are L1 � L2 � L3 ¼ 2p=1:12� 2� 2p=2:1 which is discretized with the d3 scheme
on N1 � N2 � N3 ¼ 128� 129� 128 grid points. The grid is non-uniform in the wall-normal direction according to Eq. (49)
with different values for n ¼ 0;1;10;100. We investigate the solver performance at three different Reynolds numbers
Relam ¼ 50; 500; 5000 (based on the maximum velocity of the corresponding laminar Poiseuille flow). The initial conditions

y

u

0
1 100 1000

5

10

10

15

20

25

Fig. 14. Mean velocity profile: () present simulation, (-- -) wall laws, � Schlatter [37].

Fig. 15. Reynolds stresses (left) and energy budget normalized by ðRe u4
sÞ (right): () present simulation, � reference.

3564 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
are taken from precursor simulations of turbulent channel flow which were conducted for each n separately at Relam ¼ 5000.
We integrate the flow with fixed bulk Reynolds number Reb ¼ ð2=3ÞRelam over two time units with the termination threshold
�H ¼ 10�8. The time step size is set to Dt ¼ 0:5Dtmax where Dtmax is the marginally stable time step size according the stability
regions of RK3 and CN-RK3, Eq. (4). The simulations are performed on a Cray XT5 supercomputer using P ¼ 8 CPU cores. We
would like to emphasize that we focus here only on the preconditioner of the pressure iteration which is independent of the
parallelization.

The results of this study are listed in Table 6. For strongly non-unifrom grids with small n and/or small Reynolds numbers
Re (leading to large kLk1 ¼ 2b=Dt) the average time step sizes hDti for the RK3 scheme become increasingly small whereas
the CN-RK3 scheme is not affected. On the other hand, the elapsed times to integrate one time step are smaller as well since
only one pressure iteration is required. Additionally, the flow changes only little for small Dt such that only few iterations are
required to solve the Poisson problems (we prescribe at least one Poisson iteration). If we look at the averaged elapsed times
hTi required to integrate on time unit we find that the semi-implicit scheme is only faster for simulations with large b and in
particular with strong grid stretching. More specifically, CN-RK3 is more than six times faster in terms of elapsed time with
the commutation-based preconditioner ðn ¼ 1; Re ¼ 500Þ. On the other hand, the semi-implicit methods are also slower by a
factor of three in cases with almost equidistant grids and high Reynolds numbers which leads to small bðn ¼ 1;10; Re ¼
5000Þ. In this parameter regime the time step is mostly limited by convection and less by viscosity.

When we compare the preconditioners in the simulations with CN-RK3 time integration we find that the commutation-
based preconditioner (30) performs significantly better than the simpler Laplacian preconditioner (28) in terms of elapsed
time and iteration counts. The number of pressure iterations for the latter strongly depends on n and Re whereas the com-
mutation-based preconditioner demonstrates a much weaker sensitivity with respect to these parameters. For n; Re! 0
both preconditioners become increasingly inefficient or lead to divergence (not shown here), however, an appropriately
chosen relaxation factor x or a more sophisticated primary solver may avoid that. The dependence of the preconditioner
performance on b is further investigated and discussed in Section 8 for equidistant grids.

Table 6
Performance test of the Laplacian and the commutation-based preconditioner for the outer pressure iteration. hTi is the average time in seconds to integrate
one time unit, hDti is the average time step size, hl	i; hj	i; hk	i are the average iteration counts per sub-time step and hqAi � hlog10ðkrlþ1

A k=krl
AkÞi; hqK i �

hlog10ðkr
jþ1
K k=kr

j
KkÞi; hqHi � hlog10ðkrkþ1

H k=krk
HkÞi are the average convergence rates of the pressure, Poisson and Helmholtz iteration, respectively.

b=Dt Method hTi [s] hDti hl	i hj	i hk	i hqAi hqK i hqHi

4:58 � 100 CN-RK3, Laplace 5:31 � 102 1:55 � 10�2 2.12 5.73 6.13 �1.95 �1.21 �4.02

(n ¼ 100, Re ¼ 5000) CN-RK3, commut. 5:66 � 102 1:55 � 10�2 1.06 6.96 5.07 �4.33 �1.17 �4.06

RK3 1:78 � 102 2:00 � 10�2 1 3.94 n/a �1 �1.13 n/a

2:07 � 101 CN-RK3, Laplace 6:48 � 102 1:49 � 10�2 3.05 5.88 8.47 �1.33 �1.60 �3.04

(n ¼ 10, Re ¼ 5000) CN-RK3, commut. 5:73 � 102 1:49 � 10�2 1.00 5.90 6.15 �3.88 �1.50 �3.24

RK3 1:55 � 102 2:02 � 10�2 1 3.32 n/a �1 �1.32 n/a

5:67 � 102 CN-RK3, Laplace 2:41 � 103 1:40 � 10�2 18.5 19.5 34.4 �.198 �1.77 �1.37

(n ¼ 1, Re ¼ 5000) CN-RK3, commut. 9:51 � 102 1:40 � 10�2 2.00 8.17 11.6 �2.04 �1.87 �1.78

RK3 1:10 � 103 1:62 � 10�3 1 1.30 n/a �1 �1.64 n/a

6:08 � 103 CN-RK3, Laplace 1:50 � 104 1:47 � 10�2 105 212 124 �.032 �1.07 �.915

(n ¼ 0, Re ¼ 5000) CN-RK3, commut. 1:48 � 103 1:47 � 10�2 2.80 15.7 17.3 �1.39 �1.27 �1.26

RK3 5:86 � 103 3:07 � 10�4 1 1.33 n/a �1 �.694 n/a

4:58 � 101 CN-RK3, Laplace 6:01 � 102 1:74 � 10�2 3.53 6.29 9.47 �1.01 �1.51 �2.59

(n ¼ 100, Re ¼ 500) CN-RK3, commut. 5:46 � 102 1:74 � 10�2 1.29 6.55 6.75 �2.85 �1.41 �2.79

RK3 2:17 � 102 1:23 � 10�2 1 2.62 n/a �1 �1.28 n/a

2:07 � 102 CN-RK3, Laplace 1:30 � 103 1:87 � 10�2 11.6 12.4 26.6 �.263 �1.63 �1.26

(n ¼ 10, Re ¼ 500) CN-RK3, commut. 7:19 � 102 1:87 � 10�2 2.04 7.95 12.0 �1.86 �1.75 �1.56

RK3 6:22 � 102 3:27 � 10�3 1 1.70 n/a �1 �1.51 n/a

5:67 � 103 CN-RK3, Laplace 1:12 � 104 1:75 � 10�2 128 132 178 8.021 �1.90 �.509

(n ¼ 1, Re ¼ 500) CN-RK3, commut. 1:58 � 103 1:75 � 10�2 3.20 12.6 33.1 �.983 �1.74 8.628

RK3 9:74 � 103 1:62 � 10�4 1 1.00 n/a �1 �2.06 n/a

4:58 � 102 CN-RK3, Laplace 1:46 � 103 2:00 � 10�2 13.0 14.3 33.3 �.192 �1.76 �.841

(n ¼ 100, Re ¼ 50) CN-RK3, commut. 7:17 � 102 2:00 � 10�2 1.84 7.23 15.0 �1.60 �1.58 �1.06

RK3 1:19 � 103 1:38 � 10�3 1 1.11 n/a �1 �1.68 n/a

2:07 � 103 CN-RK3, Laplace 5:07 � 103 2:08 � 10�2 55.2 57.2 118 �.036 �1.70 �.383

(n ¼ 10, Re ¼ 50) CN-RK3, commut. 1:23 � 103 2:08 � 10�2 2.59 8.77 34.5 �1.06 �1.77 �.499

RK3 4:83 � 103 3:27 � 10�4 1 1.02 n/a �1 �1.98 n/a

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3565
In the case of more equidistant grids with larger n and Re, the Laplacian preconditioner is slightly more economic since it
requires the solution of only one instead of two Poisson problems. However, the difference is benign because the initial resid-
ual for the second Poisson problem of the commutation-based preconditioner is already very small such that the second
Poisson problem can be solved at very little cost. We conclude that the commutation-based preconditioner (30) enables
an efficient solution of the pressure Eq. (20). It is more robust than the Laplacian preconditioner (28), in particular, if we ap-
ply strong grid stretching.
8. Parallel performance

This section assesses the computational performance of the proposed simulation code. In particular, we will focus on the
performance on massively parallel computers such as the Cray XT or IBM Blue Gene platforms which offer thousands of pro-
cessors connected by high-bandwidth networks. Again, we use the numerical setup (i.e. norms, grid orientation, Reynolds
number, iteration thresholds) as defined at the beginning of Section 6. The multigrid preconditioner for the Poisson problems
employs a V(3,3) cycle in this section.

The scalability of the implementation is tested for a channel flow in a cubical domain with edge lengths L1 ¼ L2 ¼ L3 ¼ L.
The domain is decomposed into P ¼ P1 � P2 � P3 sub-domains of equal size where Pi are the numbers of processor sub-do-
mains in each direction. It is discretized spatially with the d3 scheme on N1 � N2 � N3 ¼ 128P1 � ð128P2 þ 1Þ � 128P3 grid
points which are distributed equidistantly in all spatial directions for simplicity (i.e. Dx ¼ const:; n ¼ 1). We investigate
the scalability for different b ¼ 0:371; 3:710; 37:10; 371:0 by varying Dt=ðReDx2Þ and fixing the initial grid Péclet number
ReDxkuðt ¼ 0Þk ¼ 1 [43]. Note that the cases with b / svisc=2 � 2:51=2 can be integrated in time with the explicit RK3 scheme
instead of CN-RK3. All results are averaged over 20 time steps, only the tests for b ¼ 371 are averaged over five time steps
due to higher computational costs.

The initial condition is a superposition of a large number of randomly chosen vortices according to Eq. (50) which are re-
oriented in all three directions. Their amplitudes are scaled with ui � k�1

i to obtain a kinetic energy spectrum reminiscent of

3566 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
a turbulent energy cascade. To obtain a notable number of pressure iterations and therefore better statistics we choose
�H ¼ 10�8 as the termination threshold for the Helmholtz problems and initialize the pressure field additionally with a con-
stant before each pressure iterations starts. Note that this measure increases the computational effort artificially and would
not be performed in production simulations. The initial divergence residual kDu0ðt ¼ 0Þk ¼ kr0

Aðt ¼ 0Þk is about the same
throughout all tests such that the residual is reduced by a factor of about 106 in each sub-time step throughout all
simulations.

All tests are performed on a Cray XT5 massively parallel supercomputer which has a 3D torus network and two AMD
‘‘Istanbul” hex-core CPUs per node, i.e. there are ncores;max ¼ 12 cores available on each compute node. The tests in this section
employ by default double precision arithmetic and range from about N1N2N3 � 2:1 � 106 grid points on one core up to
29:0 � 109 grid points on P ¼ 13824 cores involving up to 11 grid levels in the multigrid preconditioner for the Poisson prob-
lems. Some results in Section 8.2 are conducted with single precision arithmetic which allows us to use up to
N1N2N3 � 1:52 � 1011 grid points on P ¼ 21504 cores and 12 multigrid levels. All results are obtained in a production envi-
ronment, i.e. other jobs on the computer avoid an optimal processor mapping to the network nodes and generate additional
network traffic. Further, the largest jobs cannot be mapped perfectly to the compute nodes since the arrangement of the sub-
domains will be different from the shape of the network mesh ð10� 12� 16Þ. To minimize the communication across the
network adapters, we assign by default ncores ¼ 8 cubically arranged sub-domains to each node, i.e. four blocks to each CPU.
8.1. Weak scaling

8.1.1. Design and objectives of the test
Because the approximation error of eA with respect to A is to first order a function of b (and vanishes for b ¼ 0) for any of

the preconditioners in Section 5.2.1, we expect that the conditioning of eA�1A and thus the spectral radius and the conver-
gence rate of the pressure iteration should remain about the same for all test cases for a given b. Similarly, the eigenvalue
distribution of the Helmholtz matrices H depends to first order only on b, such that also the BiCGstab solver for the Helm-
holtz problems should converge at about the same rate in all test cases with identical b [13]. These relations between b and
the convergence rates set the solver performance but do not influence the scalability of the iterative solution algorithm.

In addition to the scalability of the algorithm itself, we require also weak scalability of the implementation on a massively
parallel computer with torus network. This means that the computational effort per core and the elapsed time for solving the
problem should ideally remain the same if the problem is distributed to an increasing number of cores and if the number of
unknowns is increased simultaneously (i.e. the number of grid points per core remains constant, N3=P ¼ const:). However,
we know from the complexity analysis in Section 3.2 that also a weak dependence on the number of cores P cannot be fully
avoided on a torus network due to multigrid.
8.1.2. Results
For performance and simplicity reasons, we decompose the domain into P ¼ P1=3 � P1=3 � P1=3 cubical sub-domains in this

section. The average iteration counts hl	i; hj	i; hk	i per sub-time step and convergence rates hlog10ðkrlþ1
A k=krl

AkÞi;
hlog10ðkr

jþ1
K k=kr

j
KkÞi; hlog10ðkrkþ1

H k=krk
HkÞi for the pressure, Poisson and Helmholtz iterations, respectively, are displayed in

Fig. 16. As expected, the numbers of iterations as well as the convergence rates remain almost constant for all test cases
and depend only on b, which confirms the complexity of the algorithm and therefore its weak scalability. We would like
to point out that the convergence rate of the BiCGstab/multigrid Poisson solver is limited by design because the discretiza-
tion of the Poisson problem (d3 scheme) differs from the fine-grid discretization in the multigrid preconditioner (d1
scheme). For the V(3,3) cycle and the d3 scheme we find that the convergence rate is already close to this limit because
an increase of the number of smoothing cycles does not increase the convergence rate significantly any further. This becomes
even more evident if the d1 discretization scheme is used instead of the d3 scheme: the convergence rate is approximately
two times higher than before and not limited either for larger numbers of smoothing cycles. These convergence rates com-
pare well with other multigrid-preconditioned Krylov subspace solvers, e.g. [1]. Nevertheless, the average convergence rate
with the d3 scheme is still sufficiently high for our purposes ðhlog10ðkr

jþ1
K k=kr

j
KkÞi � �1:6; . . . ;�1:2Þ. Additionally, the results

demonstrate that the geometric multigrid approach is well suited for such problems.
Because the algorithm scales perfectly and the average numbers of iterations are about the same in all tests with identical

b, the overall elapsed time hTi to integrate one full time step should ideally remain approximately constant as well for
increasing processor counts P. But, as stated before, there actually is a dependence on the number of cores as depicted in
Fig. 17. The total elapsed time for pure arithmetic operations is about the same for all tests with identical b such that the
timing for pure communication must be responsible for the increase with growing processor counts. From a detailed perfor-
mance analysis of the case P ¼ 43 we find that communication takes about 8% of the total execution time. Further testing
reveals that the increase of the communication time is mostly caused by the fine-grid ghost cell updates. It does not grow
for an ideal processor mapping but for the worst processor mapping it increases with P1=3, cf. Section 3.2. The global reduc-
tions in the BiCGstab solver as well as the coarse-grid problems of the multigrid preconditioner for the Poisson problems still
play a secondary role. They may become visible for much larger processor counts since such operations scale with P1=3, inde-
pendent of the processor mapping (but with a smaller multiplier than the worst-case ghost cell updates). Anyway, the results
confirm the complexity of the implementation as expected from Section 3.2.

Fig. 16. Weak scalability of the algorithm for CN-RK3 time integration and different b. Left column: average iteration counts per sub-time step (Poisson and
Helmholtz problems normalized by hl	i), right column: average convergence rates. From top: pressure iteration, Poisson problems, Helmholtz problems.
ð�Þ b ¼ 371; ðjÞ b ¼ 37:1; ð
Þ b ¼ 3:71; ð�Þ b ¼ 0:371; ðMÞ b ¼ 0:371 and explicit RK3 time integration.

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3567
At this point, we would like to comment briefly on the strong increase of the elapsed time from Pi ¼ P ¼ 1 to Pi ¼ 2 and
Pi ¼ 2 to Pi > 2 in Fig. 17. The case P ¼ 1 benefits significantly from a higher memory bandwidth, whereas all other cases use
four cores per CPU instead of one. Further, the case P ¼ 23 is performed on a single compute node where the MPI commu-
nication between the processes is much faster than in all larger tests where the network comes into play. By decreasing the
number of utilized cores on each node we can reduce the network traffic significantly. Additionally, the effective memory
bandwith per core increases, such that the overall execution time benefits. This is demonstrated in Fig. 18 for b ¼ 3:71
and ncores ¼ 2;4;8;12 sub-domains per node. However, we also find that reducing ncores does not improve the weak
scalability.

Obviously, the convergence rate of the pressure iteration decreases with growing b such that all iteration counts increase
correspondingly, including the Poisson and Helmholtz problems (cf. Fig. 16). The increase suggests that the convergence rate
behaves like hlog10ðkrlþ1

A k=krl
AkÞi � 0:85log10ðb=5820Þ. Since the convergence rate does not vary significantly throughout the

iterations and time steps, we can assume that the spectral radius of the pressure iteration is roughly ðb=5820Þ0:85
/ kI�

xeA�1Ak for x ¼ 1. The spectral radius and therefore the convergence rate can probably be improved by choosing a different

P1/ 3

0

50

150

200

250

2 4 6 8 10 12 14 16 18 22 240 20

100

T
[s
]

Fig. 17. Weak scaling: average elapsed times per full time step for CN-RK3 time integration (in seconds). ð�Þ b ¼ 371 ðhTi=10Þ; ðjÞ b ¼ 37:1;
ð
Þ b ¼ 3:71; ð�Þ b ¼ 0:371; ðMÞ b ¼ 0:371 and RK3 time integration.

P1/ 3
0
0

2 4 6 8 10 12 14 16 18 22 2420

20

40

60

80

100

120

140

T
[s
]

Fig. 18. Weak scaling: average elapsed times per full time step (in seconds). ð�Þ ncores;m=ncores ¼ 6; ðjÞ ncores;max=ncores ¼ 3; ð
Þ ncores;max=ncores ¼ 3=2;
ð�Þ ncores;max=ncores ¼ 1.

3568 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
relaxation factor x or by using a more sophisticated primary solver such as BiCGstab or GMRES which make a relaxation
factor obsolete. Elman et al. [10], for instance, employed a GMRES-type solver for steady-state problems.

Similarly to the pressure iteration, the convergence rate of the Helmholtz problems decreases with increasing b because
the character of the Helmholtz problems tends to be more Poisson-like (connected with an increasingly poor conditioning of
H). It becomes evident that for larger b an appropriate preconditioning (e.g. multigrid) is necessary to reduce the iteration
counts to levels which are comparable to those of the Poisson problems. The convergence rate of the Poisson problems is
already independent of b and their total iteration count increases only with the iteration count of the pressure iteration.
We conclude that preconditioning of the Helmholtz problems and employing a more sophisticated primary solver for the
pressure problem may enhance the performance for large b significantly.

Since cases with sufficiently small b / svisc=2 � 2:51=2 do not require (semi-)implicit time integration, we compare the
iteration counts and timings between semi-implicit CN-RK3 time integration and purely explicit RK3 time integration for
b ¼ 0:371 (Figs. 16 and 17). As explained in Section 7 we find again that the computational effort to integrate one time step
is a priori smaller than for any (semi-)implicit method.

8.2. Strong scaling

In contrast to the weak scaling test, we maintain the problem size N1N2N3 constant to test the strong scaling abilities,
such that the sub-domains become smaller with increasing numbers of cores P, beginning with P ¼ Pref . Ideally, the elapsed
times per full time step T decrease with the number of cores, i.e. T � P�1 which cannot be expected from the implementation
on our test computer (cf. Section 3.2). The scaling tests start with Pref ¼ Pref ;1 � Pref;2 � Pref ;3 cores where Pref ;1 ¼ Pref ;2 ¼
Pref ;3 ¼ P1=3

ref . We increase the number of cores by increasing P1; P2; P3 subsequently by a factor of two. The series ends as

T
/(
N
1
N
2
N
3
)
[s
]

P
101 102 103 104

10−5

10−6

10−7

Fig. 19. Strong scaling: average elapsed times per full time step and grid point for b ¼ 3:71 and Pref ¼ 23 (in seconds). ð�Þ ncores;max=ncores ¼ 3=2;
ð
Þ ncores;max=ncores ¼ 3; ðMÞ ncores;max=ncores ¼ 6, (---) ideal parallel speed-up.

T
/(
N
1
N
2
N
3
)
[s
]

P
100 101 102 103 104 105

10−5

10−6

10−7

10−8

10−9

10−10

Fig. 20. Strong scaling: average elapsed times per full time step and grid point (in seconds). Empty symbols: b ¼ 3:71 with CN-RK3 time integration, filled
symbols: b ¼ 0:371 with RK3 time integration. ð�Þ Pref ¼ 23; ð
Þ Pref ¼ 43; ðMÞ Pref ¼ 83; ð5Þ Pref ¼ 163; ð}Þ Pref ¼ 243, (- --) ideal parallel speed-up.

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3569
soon as the doubling of P exceeds the machine size (note that not all cores of each compute node are employed by default).
All timings in this section are in seconds and normalized with the number of grid points N1N2N3 to make the results com-
parable with other approaches and implementations on other computers.

Similarly to Section 8.1, we investigate the strong scalability of the implementation for Pref ¼ 23, b ¼ 3:71 with
ncores ¼ 2;4;8 sub-domains per node. As demonstrated in Fig. 19 the average elapsed times required to integrate one full time
step hTi, decrease with decreasing ncores. However, the results also reveal the limitations of our approach with respect to its
strong scalability. As discussed in Section 3.2, the contributions to the computational complexity of the ghost cell updates
and ultimately the coarse-grid communication of the multigrid preconditioner for the Poisson problems come into play
for very large processor counts P. In either case, the test demonstrates that the strong scalability cannot be improved any
further by a higher effective memory bandwidth per core and minor network load. Moreover, the test indicates that both,
memory access and network, are released at about the same rate because the critical number of cores P (at which the elapsed
times begin to stagnate) is about the same for the three test series.

Analogously to Section 8.1, we compare semi-implicit (CN-RK3, b ¼ 3:71) and purely explicit time integration (RK3,
b ¼ 0:371) with respect to the strong scalability of the implementation. The results are depicted in Fig. 20. They demonstrate
that the explicit scheme is about 3.7 times faster per full time step than the semi-implicit scheme. However, the parameter b
is 10 times larger in the semi-implicit scheme, i.e. the time step size Dt could be larger by the same factor (for fixed Re and
Dx) which makes the semi-implicit scheme faster overall. However, this does not account for other aspects such as accuracy
issues.

In a next step, we compare our implementation with a state-of-the-art spectral solver (FFT with data transpositions)
which was benchmarked by [8] on a computing platform similar to ours. To be able to compare both approaches we need
to switch to single precision arithmetic and to enlarge the problem size per core such that the total problem size becomes

T
/(
N
1
N
2
N
3
)
[s
]

P
102 103 104 105

10−7

10−8

10−9

10−10

Fig. 21. Strong scaling: average elapsed times per full time step and grid point for b ¼ 0:371, RK3 time integration, N1N2N3=P � 1923 grid points
per core and single precision arithmetic (in seconds). Empty symbols: d3 discretization, filled symbols: d1 discretization. ð�Þ Pref ¼ 168; ð
Þ Pref ¼ 1 344;
ðMÞ Pref ¼ 10752; ðOÞ Pref ¼ 21504, (-- -) ideal parallel speed-up.

3570 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
N1 � N2 � N3 ¼ 192P1 � ð192P2 þ 1Þ � 192P3. In this test we employ ncores ¼ ncores;max ¼ 12 cores per node. Different from the
previous tests, we use a base decomposition of 4� 6� 7 sub-domains (the largest test problem comprises 32� 24� 28 sub-
domains). The domain is not cubical anymore since we maintain constant grid spacings Dx ¼ const: throughout the test. We
use �H ¼ 10�6 as termination criterion in this test because �H ¼ 10�8 is too small for single precision arithmetic. Additionally
to the d3 discretization scheme we also perform test simulations with the d1 scheme which is computationally cheaper than
the d3 scheme. In particular, the convergence rate of the multigrid-preconditioned Poisson solver is larger.

The results are depicted in Fig. 21 for b ¼ 0:371 and explicit RK3 time integration which demonstrates again good scala-
bility. The smallest average elapsed time per sub-time step and gridpoints per core (i.e. hTiP=ðN1N2N3Þ) is about
’ 1:72 � 10�6 s for the d3 discretization scheme and ’ 8:45 � 10�7 s for the d1 scheme. The spectral method reaches
’ 1:2 � 10�6 s on a Cray XT4 and ’ 4:7 � 10�6 s on a IBM BG/L. Note that these numbers are derived at the maximum core
load N1N2N3=P where communication is minimal, such that the processor speeds play a major role. Obviously, our method
is competitive at this degree of parallelization and problem size. This has been demonstrated before for much smaller prob-
lems, e.g. by Hess and Joppich [18], but not for higher-order discretizations and not for the present problem sizes.

Generally, the elapsed time starts to stagnate at a load of about N1N2N3=P / 104 grid points per core. At this point the
network is clearly the limiting factor and not the CPU speed such that the results become more sensitive to network traffic
variations due to concurrently running jobs.
9. Concluding remarks

We presented an efficient solver for three-dimensional time-dependent incompressible viscous flows which uses high-
order finite difference discretizations in time and space and is optimized for massively parallel supercomputers with a torus
network. As laid out in Section 3, a high-fidelity simulation of very large flow problems performs best on such machines with
a static data decomposition in all three coordinate directions. This limits our choice for a spatial discretization scheme to
local schemes. In the present work, we selected a set of high-order finite difference schemes on staggered grids. They yield
stable and accurate results at moderate computational cost and lead to a relatively low amount of communication between
the processors. Our choice of a semi-implicit time integration scheme (Crank–Nicolson with a third-order Runge–Kutta
scheme) eliminates the restrictive viscous time step limitation. A purely explicit Runge–Kutta time integration has also been
implemented which may be more efficient for certain flow configurations (cf. Sections 7 and 8).

For the solution of the discretized equations, we apply a cascade of iterative solution methods. These solvers are well sui-
ted for a massively parallel implementation and allow us to meet the desired high accuracy levels at relatively low cost.
Depending on the character of the problem (sparsity, conditioning, eigenvalue spectrum, etc.) we use different iterative
schemes: a preconditioned Richardson iteration for the outer pressure problem, the Krylov subspace method BiCGstab for
the Helmholtz problems and a multigrid-preconditioned BiCGstab scheme for the Poisson problems in the pressure
preconditioner.

In contrast to direct solvers, iterative methods allow us to terminate the iteration at a given level of accuracy. We use this
property to reduce the computational cost especially for those sub-problems which do not need high accuracy (e.g. precon-
ditioner problems). The relations between the termination criteria for the cascaded iterative solvers were derived in Sections
5.4 and 5.5 and shown to be effective in Section 6.2.

An appropriate choice for the preconditioner of the pressure problem is very critical for the overall efficiency of the sim-
ulation code. We chose the commutation-based preconditioner by Elman et al. [10,11] which apparently has not been used

R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572 3571
before for time-dependent incompressible flows. We found that this preconditioner performs better than the simpler Laplace
preconditioner of Brüger et al. [5]. All of the mentioned preconditioners have in common that the pressure iteration conver-
gences only if b � Dt=ðReDx2Þ is sufficiently small for a given relaxation factor x. This restriction may be avoided by using
more sophisticated solvers (e.g. Krylov subspace methods) instead of the Richardson iteration. In either case, a semi-implicit
time integration scheme is only efficient if it leads to a faster simulation code compared to a purely explicit time integration.
We demonstrated this for the commutation-based preconditioner for a turbulent channel flow.

We validated the implementation carefully by running different test cases. This included a validation of the convergence
orders of the temporal and spatial discretization schemes as well as simulations of eigenmodes and of transitional and tur-
bulent channel flows.

The parallel performance tests indicate no apparent limit for the (weak) scalability of the present implementation. Sim-
ulations of pseudo-turbulent flow with up to 1:52 � 1011 grid points were carried out on up to 21504 CPU cores at an aggre-
gate computational performance level of about 20 Tflop/s. These tests were limited by the size of available computing
platform and not by the scalability of the simulation code.

Acknowledgment

This work has been supported through the ETH research grant TH-23/05-2. Computational resources were provided by
the Swiss National Supercomputing Centre (CSCS).

References

[1] M. Adams, M. Brezina, J. Hu, R. Tuminaro, Parallel multigrid smoothing: polynomial versus Gauss–Seidel, J. Comput. Phys. 188 (2003) 593–610.
[2] S.W. Armfield, Finite difference solutions of the Navier–Stokes equations on staggered and non-staggered grids, Comput. Fluids 20 (1) (1991) 1–17.
[3] G.A. Blaisdell, N.N. Mansour, W.C. Reynolds, Numerical simulation of compressible homogeneous turbulence, Technical Report Rep. TF-50, Department

of Mechanical Engineering, Stanford University, 1991.
[4] A. Brandt, N. Dinar, Multi-grid solutions to elliptic flow problems, in: S. Parter (Ed.), Numerical Methods for Partial Differential Equations, Academic

Press, New York, 1979, pp. 53–147.
[5] A. Brüger, B. Gustafsson, P. Lötstedt, J. Nilsson, High order accurate solution of the incompressible Navier–Stokes equations, J. Comput. Phys. 203 (2005)

49–71.
[6] K. Chen, Matrix Preconditioning Techniques and Applications, Cambridge University Press, Cambridge, 2005.
[7] H. Choi, P. Moin, Effects of the computational time step on numerical solutions of turbulent flow, J. Comput. Phys. 113 (1994) 1–4.
[8] D.A. Donzis, P.K. Yeung, D. Pekurovsky, Turbulence simulations on O104 processors, in: Proceedings of the TeraGrid 08 Conference, 2008.
[9] T.M. Eidson, G. Erlebacher, Implementation of a fully balanced periodic tridiagonal solver on a parallel distributed memory architecture, Concurrency

Comput.: Pract. Exp. 7 (4) (1995) 273–302.
[10] H. Elman, V.E. Howle, J. Shadid, R. Shuttleworth, R. Tuminaro, A taxonomy and comparison of parallel block multi-level preconditioners for the

incompressible Navier–Stokes equations, J. Comput. Phys. 227 (3) (2008) 1790–1808.
[11] H.C. Elman, Preconditioning for the steady-state Navier–Stokes equations with low viscosity, SIAM J. Sci. Comput. 20 (1999) 1299–1316.
[12] T. Fujimoto, R.R. Ranade, Two characterization of inverse-positive matrices: the Hawkins–Simon condition and the Le Chatelier–Braun principle,

Electron. J. Linear Algebra 11 (2004) 59–65.
[13] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
[14] W. Hackbusch, Multi-Grid Methods and Applications, Springer, Berlin, 1985.
[15] R. Henniger, L. Kleiser, Simulation of gravity-driven flows using an iterative high-order accurate Navier–Stokes solver, in: Direct and Large-Eddy

Simulations VII, Trieste, 2008.
[16] R. Henniger, L. Kleiser, E. Meiburg, Direct numerical simulation of a model estuary, in: Sixth Int. Symp. on Turb. Shear Flow Phenom., Seoul, 2009.
[17] V.E. Henson, U.M. Yang, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math. 41 (2000) 155–177.
[18] R. Hess, W. Joppich, A comparison of parallel multigrid and a fast Fourier transform algorithm for the solution of the Helmholtz equation in numerical

weather prediction, Parallel Comput. 22 (1997) 1503–1512.
[19] S. Hoyas, J. Jimenez, Scaling of the velocity fluctuations in turbulent channels up to Res ¼ 2003, Phys. Fluids 18 (2006) 011702.
[20] J. Jeong, F. Hussain, On the identification of a vortex, J. Fluid Mech. 285 (1994) 69–94.
[21] G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for incompressible Navier–Stokes equations, J. Comput. Phys. 97 (1991) 414–443.
[22] L. Kleiser, T.A. Zang, Numerical simulation of transition in wall-bounded shear flows, Annu. Rev. Fluid Mech. 23 (1991) 495–537.
[23] S. Le Borne, Hierarchical matrix preconditioners for the Oseen equations, Comput. Vis. Sci. 11 (3) (2006) 147–157.
[24] S. Le Borne, Block computation and representation of a sparse nullspace basis of a rectangular matrix, Linear Algebra Appl. 428 (11–12) (2008) 2455–

2467.
[25] S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16–42.
[26] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31

(4) (1994) 1019–1044.
[27] Y. Li, Wavenumber-extended high-order upwind-biased finite-difference schemes for convective scalar transport, J. Comput. Phys. 133 (1997) 235–

255.
[28] A. Lundbladh, D.S. Henningson, A.V. Johansson, An efficient spectral integration method for the solution of the Navier–Stokes equations, Technical

Report FFA TN 1992-28, Aeronautical Research Institute of Sweden, FFA, 1992.
[29] L.R. Matheson, E. Tarjan, Analysis of multigrid algorithms on massively parallel computers: architectural implications, J. Parallel Distrib. Comput. 33

(1996) 33–43.
[30] N. Mattor, T.J. Williams, D.W. Hewett, Algorithm for solving tridiagonal matrix problems in parallel, Parallel Comput. 21 (1995) 1769–1782.
[31] P. Moin, J. Kim, On the numerical solution of time-dependent viscous incompressible fluid flows involving solid boundaries, J. Comput. Phys. 35 (1980)

381–392.
[32] P. Moin, K. Mahesh, Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech. 30 (1998) 539–578.
[33] K. Moriya, T. Nodera, Breakdown-free ML(k)BiCGStab algorithm for non-hermitian linear systems, in: O. Gervasi et al. (Eds.), Computational Science

and its Applications, Lecture Notes in Computer Science, vol. 3483, Springer, 2005, pp. 978–988.
[34] S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass

Transfer 15 (10) (1972) 1787–1806.
[35] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 1–39.
[36] A. Povitsky, Parallelization of pipelined algorithms for sets of linear banded systems, J. Parallel Distrib. Comput. 59 (1999) 68–97.

3572 R. Henniger et al. / Journal of Computational Physics 229 (2010) 3543–3572
[37] P. Schlatter, Large-eddy simulation of transition and turbulence in wall-bounded shear flow. PhD thesis, ETH Zürich, Zürich, Switzerland, 2005. Diss.
ETH No. 16000.

[38] M.P. Simens, J. Jimenez, S. Hoyas, Y. Mizuno, A high-resolution code for turbulent boundary layers, J. Comput. Phys. 228 (2009) 4218–4231.
[39] P.R. Spalart, R.D. Moser, M.M. Rogers, Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions, J. Comput. Phys.

96 (1991) 297–324.
[40] P.N. Swarztrauber, S.W. Hammond, A comparison of optimal FFTs on torus and hypercube multicomputers, Parallel Comput. 27 (2001) 847–859.
[41] S. Turek, A comparative study of time-stepping techniques for the incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids 22 (10)

(1996) 987–1011.
[42] H.A. van der, Vorst. BiCGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Comput.

13 (1992) 631–644.
[43] J. Wesseling, Principles of Computational Fluid Dynamics, Springer, Berlin, 2001.
[44] G. Wittum, Multi-grid methods for Stokes and Navier–Stokes equations—transforming smoothers: algorithm and numerical results, Numer. Math. 54

(1989) 543–563.
[45] A.A. Wray, Very low storage time-advancement schemes, Technical report, NASA Ames Research Center, 1986.
[46] J. Xu, Benchmarks on tera-scalable models for DNS of turbulent channel flow, Parallel Comput. 33 (12) (2007) 780–794.
[47] F. Zhang, The Schur Complement and its Applications, Springer, New York, 2005.

	High-order accurate solution of the incompressible Navier–Stokes equations on massively parallel computers
	Introduction
	Governing equations
	Solution technique, discretization and parallelization
	Static and dynamic data decomposition
	Discussion of different strategies

	Discretization
	Temporal discretization
	Spatial discretization
	Staggered grid
	Finite difference stencils and non-uniform grids

	Iterative solution
	Schur complement formulation
	Pressure iteration
	Preconditioner for the pressure iteration
	Solution of the Poisson problems in the preconditioner

	Helmholtz problems
	Relations between the termination criteria and the solution accuracy
	Termination criterion for the preconditioner
	Solvability

	Validation
	Convergence order
	Spatial convergence order
	Temporal convergence order

	Termination criteria and solution accuracy
	Orr–sommerfeld and squire modes for poiseuille flow
	Transitional channel flow

	Performance test of the preconditioners
	Parallel performance
	Weak scaling
	Design and objectives of the test
	Results

	Strong scaling

	Concluding remarks
	Acknowledgment
	References

